CHAPTER

Comb and String
Filters

1 combifilters

In this chapter we’re going to explore some filters that are very useful for generating
and transforming sound. By the end of the chapter we will have built an astonishly
simple and efficient digital plucked-string instrument that is used all the time in com-
“puter music. In the process you'll get some practice using feedback filters, and also
build up some intuition relating the behavior of comb filters to the standing waves on
strings and in columns of air that we studied in Chapter 2.

In Chapter 4 we looked at inverse comb filters, but 1 haven’t said yet where that
name comes from. The inverse comb is described by the filter equation

: ye=x — Rbx,p (t.n

where x, and y, are the input and output signals, as usual. This filter uses only past
inputs — no past outputs — so it's a feedforward filter. Suppose instead we consider
the feedback filter that uses the past output y,_, in place of —x,_;:

yo=x + Rhy,y (1.2

The reason we changed the sign of the delayed output signal will become clear
shortly. To find the transfer function and frequency response, write Eq. 1.2 symboli-
cally:

Y=X+ Rty (1.3)
Solving for the transfer function Y/X gives
1
| — R L

We’ll call this feedback filter a comb filter.

Hz) = (1.4)
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Chapter 6 Comb and String Filters

Notice that the transfer function of this feedback filter is precisely the reciprocal of
the transfer function of the feedforward filter called an inverse comb in Section 8 of
Chapter 4. From this it follows that the magnitude frequency response of the comb
filter is the reciprocal of that of the inverse comb. This explains the terminology. In
fact, if we follow one filter with the other, the net result is to restore the original input
signal; the two filters cancel each other out. Let’s check this for the case of an inverse
comb followed by a comb. As above, call the input to the inverse comb x and its out-
put y. The signal y then becomes the input to the comb; call its output w. The equa-
tions for the two filters then become

— L
ye=x —Rx._

w, =y, + Rlw,_, ()
Solve the second equation for y, and substitute in the first, yielding
x, — Rix,_; = w, — R*'w,_, (1.6)

z-plane

Fig. 1.1 The ‘ocation of the poles of the comb filter in Eq. 1.2. The plot
shown corresponds o a loop delay of L = 8 samples, and hence shows 8

poles.

Our gea! is to show that the signals x and w are identical. Before we rush to con-
clude that this is implied by Eq. 1.6, there’s a detail I've glossed over. We have to say
something about how the filters get started, and whether the input x has been going on
for all time. Let's make the simple assumption here that the signal x doesn’t get
started until # = 0 — in other words, that x, is zero for 1 < 0. (I'll leave the fine point
of what happens otherwise for Problem 1.) If this is so then Eq. 1.6 implies that
x, =w,fort =0, 1,...,L-1, because the delayed terms x,_, and w,_, are zero
in that range. This implies, by the same reasoning, that x, = w, for
t=1L,L+1,...,2L~1. We can continue the argument to infinity, block of L by
block of L. In fancier terminology, this is a proof by induction on blocks of signal of
fength L.

Figure 1.1 shows the poles of the comb filter described by Eq. 1.2. They’re
exactly where the zeros of the inverse comb are (see Fig. 8.1 in Chapter 4) — at the
zeros of the denominator 1 ~ Rz, equally spaced around the circle of radius R.

§1 Comb filters

magnitude response, dB

03 oqh o..m
frequency, fractions of sampling rate

Fig. 1.2 Frequency response of the comb filter described'in the previous
figure. The case shown is for R = 0.999. ¢

Fig. 1.3 Magnitude of the transfer function of the comb of Figs. 1.1 and
1.2, shown as a contour plot above the z-plane.
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Chapter 6 Comb and String Filters

You can view the canceling of the comb and inverse comb filters as simply the poles
of the comb transfer function canceling the zeros of the inverse comb transfer func-
tion. Figure 1.2 shows the magnitude frequency response of the comb for the case of a
loop delay L = 8. It is of course just the reciprocal of the magnitude response of the
inverse comb. In decibels, the reciprocal of a number becomes its negative, so one
magnitude plot can be obtained by turning the other upside down, as hinted at the end
of Chapter 4. It should be clear now why we call these ‘*‘comb’” filters.

Finally, a bird’s-eye view of the magnitude response as a contour plot above the
z-plane is shown in Fig. 1.3. It looks just like the pole pairs of three resons, plus
another pair of poles at 1.

.nalogy to standing waves

A comb filter works by adding, at each sample time, a delayed and attenuated version
of the past output. You can think of this in physical terms: The delayed ard
attenuated output signal can be thought of as a returned rraveling wave. This kind of
analogy has been used in interesting ways recently by Julius Smith and Perry Cook to
model musical instruments, and I’ve given some references to their work in the Notes
at the end of this chapter. I want to introduce just the flavor of the idea here, and I'll
return to this theme later when we discuss reverberation in Chapter 14.

Figure 2.1 shows the signal flowgraph for a comb filter, with some suggestion of a
traveling-wave interpretation. An output wave travels around the feedback loop and
returns after a delay of L samples; the return wave is added to the input, but only after
it is attenuated by the factor RL, which we’ll assume is less than one in magnitude.
You can think of the parameter R as the signal attenuation per sample. For example,
the wave may be traveling through air, which absorbs a fraction of the wave's energy
every T, seconds, where T, is the sampling interval. The delay L is the round-trip
time in samples.

input x 7 < oulput y
6 -
R D

1 ile
=1
delay L

Fig. 2.1 The signal flowgraph of a comb filter with a hint of its traveling-
wave interpretation.

In vibrating columns of air, waves are reflected at boundaries in two ways.
Reflection at a closed end of a tube inverts the sign of a wave; reflection at an open
end doesn’t. What matters in Fig. 2.1 is the net effect of a round-trip, which we want
to be no change in sign, being that we’ve chosen the sign of the feedback term to be

§2 Analogy to standing waves 105

positive. Therefore the appropriate analogy to the comb filter is a tube of length L/2
(so the round-trip time is L), either closed at both ends or open at both ends. As for
strings, we can’t really imagine a vibrating string that is not tied down at its ends, so
the analogy must be a string fixed at both ends, also of length L/2.

A string tied down at both ends (or a tube open or closed at both ends) has the
natural resonant frequencies k2n/L radians per sec, as shown in Eq. 5.15 in Chapter 2,
where k is any integer. (That equation actually has frequencies kn/L; the factor of two
is explained by the fact that here the string is of length L/2 instead of L.) These are
precisely the angles where the poles of the comb filter occur in the z-plane. This
checks our interpretation and gives us an intuitive way to understand the resonances as
standing waves. The resonant frequencies are the ones that fit in the feedback loop an
integer number of times, just as the standing waves are the waves that fit perfectly on
the string or in the tube..

What happens if the sign of the wave is inverted in the course of a round-trip of
the feedback loop? This corresponds to replacing the plus sign in Eq. 1.2 by a minus:

Ye = X — xhv.-lh ' 2.1)

Physically, this corresponds to the vibration of air in a tube that is closed at one end
and open at the other. Recall from our work with tubes that the fundamental resonant
frequency is now half of what it was with both ends closed or open, and that only odd
harmonics are possible (see Eq. 7.12 in Chapter 2). Algebraically these frequencies
are k2r/(2L) = kn/L, where k is an odd integer. (Again, there is a factor of two
because now the round-trip length is L instead of 2L.) The physical picture has
sinusoids with maxima or minima at one end and zeros at the other (Fig. 7.1 in
Chapter 2).

Let’s check the comb filter with a sign inversion against the tube closed at one end
and open at the other. The transfer function corresponding to Eq. 2.1 is

Hz) = T+ R T 2.2)
and the poles are at roots of the equation
=1 2.3)
Since
-1 = e (2.4)

the roots are all shifted by an angle n/L with respect to the case of a comb filter
without sign inversion, as shown in Fig. 2.2. These pole angles are in fact odd har-
monics of the fundamental frequency n/L. I hope by this point you can anticipate the
frequency response, shown in Fig. 2.3, from the pole pattern. Each pole near the unit
circle causes a resonance peak — and the resonant frequencies of the comb are
exactly the same as those of the analogous resonant tube.

R
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z-plane

Fig. 2.2 Pole locations of an 8-pole comb filter with sign inversion around
the feedback loop.
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Fig. 2.3 Frequency response of the 8-pole comb fitter with sign inversion.
The case shown is for R = 0.999.

Plucked-string filters

Comb filters are versatile building blocks for making sounds of all sorts. Variations of
them can be used to simulate reverberation, to transform the character of any input
sound, or to construct a very striking and efficient instrument that sounds like a
plucked string.

A comb filter gets you a lot for a little — a simple delay line holding 50 samples
results in a filter with 25 pole-pairs, and therefore 25 resonant frequencies. The filter’s
frequency response is complicated, but its implementation entails only one multiplica-
tion and one addition per sample. In a sense the comb's success stems from the fact
that it models a basic physical phenomenon: the return of an echo.
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Next, I want to show how the physical interpretation of a comb filter can be
exploited to derive the plucked-string filter. Suppose we apply a unit impulse to the
comb filter in Eq. 1.2. What is the resulting impulse response? Well, the unit impulse
returns L samples later, and is multiplied by the coefficient RY. There is no other
input to the delay line, so nothing else happens between time 0 and time L. The pulse
of height R” then enters the delay line and returns L samples later, and so forth. The
impulse response is therefore

L =
h, = R" ift=0modlL G.1)

0  elsewhere

That is, h, = R' for t =0, L, 2L, ..., and zero otherwise. This is a periodic
sequence of pulses at the fundamental frequency f,/L Hz, an integer fraction of the
sampling rate — except that it decays at a rate determined by the parameter R. The
closer R is to one, the slower it decays (and the closer the poles are to the unit circle).
If you listen to the impulse response of a comb filter, that’s exactly what you hear: a
buzzy sound with pitch f, /L that dies away. Not very exciting,

Remember that a string tied down at both ends supports standing waves because
traveling waves are reflected from both those ends. The behavior of a comb filter is
very similar, as noted in the previous section. We might therefore expect the impulse
response of a comb filter to sound like a string that is suddenly set in motion — but it
doesn’t. Why not? Because the sound of a string changes in a certain way over the
course of a note. This is an example of a recurrent theme in computer music and in
psychoacoustics in general: sounds are not interesting unless they change their fre-
gquency content with time. Perfectly periodic waveforms are boring.

But the behavior of the comb filter does reflect the fact that a plucked string does
not go on vibrating forever. Iis energy is gradually dissipated to the rest of the world.
Some energy is radiated in the form of sound to the air, and some is transmitted to the
supports at the ends of the string, where it contributes to the radiation of sound by
other parts of the instrument, like the bridge and sounding board. This decay in energy
is captured by the poles of the comb filter being inside the unit circle at radius R, caus-
ing the waveform amplitude to decay by the factor R every sample (R" in L samples).

We’re still missing something critical: the insight that the different frequency com-
ponents produced by a vibrating string decay at different rates [Karplus and Strong,
1983]. The high frequencies die away much faster than the low frequencies. This is
illustrated in Fig. 3.1, which shows the spectrogram of a real plucked string, an acous-
tic guitar note. Notice how the high-frequency components present at the attack die
away faster than the fundamental components.

Karplus and Strong suggest a very clever modification of the comb filter to take
this effect into account. The idea is to insert a lowpass fiiter in the feedback loop so
that every time the past output signal returns, its high-frequency components are
diminished relative to its low-frequency components. This works like a charm. In fact
it works so well it seems almost like magic.

What’s more, the following very simple lowpass filter works well:

v, = Wl + x,4] (3.2)




Chapter 6 Comb and String Filters
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Fig. 3.1 Spectrogram of a real acoustic guitar note, the F# in the octave
above middle C's octave, which corresponds to a pitch of 740 Hz. The
abscissa is time in sec, and the ordinate is frequency in kHz. The horizon-
tal bars show the harmonics of the fundamental frequency.

Except for the factor of two, we looked at the same filter in Section 7 of Chapter 4; it
has the transfer function

Hz) = Bt + 27" 3.3)

with a zero at the point in the z-plane that corresponds to the Nyquist frequency,
z = —1 . Its complex frequency response can be put in the form

H(w) = cos(w/2)e/ — ) (34)

The magnitude response | H(w)| = |cos(w/2)]| starts at unity for zero frequency and
slopes down to zero at the Nyquist frequency, as shown in Fig. 3.2. This is a modest
lowpass filter, but it does the job nicely. The intuition is that the filter operates on the
signal every time it executes a round-trip around the feedback loop of the comb. After
m round-trips, the signal has been processed by the lowpass filter m times, so its fre-
quency content has been multiplied by | H(w)|™. It is therefore a good thing that the
filter has a gently sloping frequency response; otherwise, the high-frequency com-
ponents of the signal would get wiped out too fast.

Figure 3.3 shows the spectrogram of a note produced by the plucked-string filter
just described. The abscissa shows time in sec, and the ordinate shows the frequency
content for a time segment around that time. The faster decay of the higher frequen-
cies is just what we planned.

We now come to an interesting point about phase response. In many cases, the
phase response of a filter is not critical, but when the filter is in a feedback loop, as it
is now, its effect on phase can be critical. Equation 3.4 shows that the lowpass filter
has linear phase, so its delay is the same for all frequencies. In fact, the complex
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Fig. 3.2 The magnitude response of the simple lowpass feedforward filter
used in the plucked-string filter.

frequency, kMz
o
1

“lﬁ""""

{

T
0.0 0.25 05 0.75
time, sec

Fig. 3.3 Spectrogram of a note produced by the plucked-string filter. The
abscissa shows time in sec, and the ordinate shows frequency in kHz.
The parameters are R = 0.9995, L = 75, and f; = 22,050. One hundred
random numbers were used as I input.

exponential factor is precisely equivalent to a delay of one-half sample. The loop
delay is therefore L + !, samples, not L samples, and the fundamental frequency
generated is f,/(L + !4). This is not a trivial matter; when L = 50, for example, the
difference in frequency caused by the lowpass filter is about 1 percent — easily dis-
cernible by ear.
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The plucked-string filter we have now is so nice to listen to, and so efficient, that it
is one of the most commonly used computer instruments for real-time applications.
Because it is so widely used, there has been a fair amount of work in tuning it up
(literally and figuratively), and extending it to other kinds of sounds. We will discuss
some of these ideas here, and for more information you should see [Karplus and
Strong, 1983] and [Jaffe and Smith, 1983].

The filter we’ve constructed is a little more intricate than the simple feedforward
or feedback filters we’ve seen so far: It consists of a feedforward loop within a feed-
back loop. In the next section we’ll describe the filter’s implementation and then take
a look at its frequency response.

nplementing plucked-string filters

Figure 4.1 shows a signal flowgraph of the plucked-string filter, with its feedforward
loop within its feedback loop.

input X w oulput Y
1/2
®
T —

| |
| 2L le

J Bl

Fig. 4.1 Signal flowgraph for the plucked-string filter. Note the intermediate

signal w.

To write the update equations for implementing the filter, it’s convenient to introduce
the intermediate signal w, which appears immediately after the closing of the feedback
loop. The signal w is determined by the input x and the delayed and weighted output
y, as follows:

w, =x, + xhv:nh “.1)
The output at time ¢ is determined by the feedforward filter with input w, so
Y. = law, + lhw, 4.2)

This is a little different from the situations we’ve seen up to now. The determination
of the next value of the output is determined by two equations instead of one. But this
presents no new difficulty. At each value of the sample number ¢, we first find w,
from x, and y,_,;, using Eq. 4.1; then we find the output value y, from w, and w,_,,
using Eq. 4.2. Of course, just as in the simple feedforward or feedback filter, we need
to save signal values for future use. In this case we need to save the past output values
back to y,_;, as well as the value of w at the previous sample, w,_ .

§5 Resonances of the plucked-string filter 111

You should be a little worried at this point about the possible side effects of what
we did. We inserted a lowpass filter in the feedback loop of a comb to attenuate the
high frequencies as they circulate around the loop. The magnitude response of the
lowpass filter does have the desired effect, as we’ve seen from the spectrogram in Fig.
3.3. The phase response of the lowpass filter introduces an additional half-sample
delay, and we argued that this makes the loop delay L + /5 samples instead of L. But
how do we know where the resonances of the altered filter really are? Are they at mul-
tiples of the fundamental frequency f,/(L + /5)? The resonances of a filter with
feedback are determined by its poles, and in the case of the simple comb, the poles are
at the Lth roots of unity — equally spaced in frequency. But now the algebraic deter-
mination of the pole locations is very difficult (I don’t know if it’s even possible), and
we are forced to look directly at the frequency response.

5 Resonances of the plucked-string filter

To look at the frequency response of the plucked-string filter ‘we need to derive its
transfer function. This is not very hard, using the same symbolic approach we used
for simpler filters. Recall that a delay of one sample is represented by the operator
z7!; a delay of L samples by z7%. In terms of these operators, Eqgs. 4.1 and 4.2

become

W=X+ Rty ¢.0)
and

Y= + 7' W 5.2)

It is now a matter of a little algebra to solve for the ratio ¥/X, the transfer function of
the filter from input X to output Y. First substitute the expression for W in Eq. 5.1 into
Eq. 5.2, getting an equation involving only Y and X. Then solve for Y in terms of X,
yielding
_ %l + 27"
Hz) = Y/X T Rz Lyl + 2] (5.3)
We’re most interested in the magnitude response corresponding to this transfer
function. This is not really hard to compute, but I want to take a little time to explain
some details of the program I wrote to do it. It will be a good review of the previous
two chapters. First, I multiplied the numerator and denominator of Eq. 5.3 by 274!,
to get the transfer function in the less confusing and more conventional form of a ratio
of polynomials:

L+l L
Z +z
Hz) = L+1 L L
2z - R"z-R
We want to evaluate this for z on the unit circle, so I then replaced z and its powers
using Euler’s formula:

(5.4)

Z = cos® + jsino

7t = cos(Lw) + jsin(Lw) (5.5)

2HY = cos((L+ 1) w) + jsin((L+1)w)
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It's then easy to write out explicitly the real and imaginary parts of the numerator and
denominator:

Real {numerator} = cos((L+1)w) + cos(Lw)

Imag {numerator} = sin((L+1)w) + sin(Lw)

Real {denominator} = 2cos((L+1)w) - R:cosw — R*
Imag {denominator} = 2sin((L +1)®) — R%sinw

(5.6)

where Realand Imag denote the real and imaginary parts, respectively. I assigned tem-
porary variables for these four components, the real and imaginary parts of the
numerator and denominator. The magnitude response is the magnitude of this as a
complex function, or

i”h
[ Real {numerator}]? + [Imag {numerator }]?

[H(w)| . - . .
[ Real {denominator}]® + [ Imag {denominator }]

5.7

I then just evaluated this for w on a grid in the range from 0 to n radians per sample.
Figure 5.1 shows the result when L = 32 and the coefficient R = 0.999. Since

the round-trip delay of the feedback loop is 32.5 samples, we expect the resonances to

occur at integer multiples of f,/732.5, and these frequencies are marked by triangles on

the graph.

40
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Fig. 5.1 Magnitude response of a plucked-string filter, for the case of a
loop length L = 32 and pole radius A = 0.999. The expected resonant fre-
quencies, integer multiples of f,/32.5, are indicated by triangles.

The first interesting thing to notice in Fig. 5.1 is that the resonance peaks increase
in width as frequency increases. This is exactly what we should expect, since the
lowpass filter inserted in the loop causes higher frequencies to decay faster. Wider

i
1
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resonance peaks correspond to poles farther from the unit circle, and to signal com-
ponents that decay faster.

Second, the peaks in the magnitude response line up very closely with the
predicted integer multiples of f,/32.5. The peaks are not precisely at the expected
points, and they also are not at exact integer multiples of the frequency of the first
peak. This deviation of the overtone series from a simple harmonic progression is
smaller when the harmonic numbers are lower, and also when the loop delay L is
larger (corresponding to a lower fundamental frequency). But the deviations, espe-
cially at the lower harmonics, are very tiny. Tinier than we usually need to worry
about. For example, in our example with a loop delay of 32 samples, the tenth har-
monic is off by only 0.027 percent. The deviations for lower harmonics and lower-
pitched filters are even smaller.

A third noticeable difference in the magnitude response of the plucked-string filter,
compared to a comb filter, is its general lowpass shape. The peaks decrease in ampli-
tude with increasing frequency, whereas the peaks of the comb filter are all of equal
height. This is not surprising, since we inserted a lowpass filter in the path between
input and output. ’

The piucked-string filter is so useful for musical purposes that we will want to be
able to tune its pitch very finely. That leads us to the first-order allpass filter, a useful
and interesting filter in its own right.

6 The first-order allpass filter

At this point we have only crude control over the pitch of a plucked-string filter. We
can choose the integer loop length L, yielding a fundamental pitch f./(L + /), but
that integer L is all we have to work with. To see just how crude this control of pitch
is, let’s see what happens when L = 10. This is a perfectly reasonable example, by
the way; if the sampling rate is 22,050 Hz, a loop length of 10 corresponds to a
pitch of 22,050/10.5 = 2100 Hz, which is very close to the C three octaves above
middle C. Now suppose we decrease L by one. This increases the pitch to
22,050/9.5 = 2321.05 Hz, which is almost up to the following D, a jump of almost a
full step in the scale. We appear to be in real trouble if we want to produce the C#
between the two. Smooth glissandos seem to be out of the question. Getting better
control over the pitch of the plucked-string filter presents an interesting problem,
which we’ll now address.

Intuitively, the fundamental resonant :.B:n:ow of the plucked-string filter is deter-
mined by the total delay around the feedback loop. If the total delay is D samples, or
DT, sec, the first resonant frequency is 1/A(DT,) = f,/D Hz. We haven’t said any-
thing about D being an integer number of samples. In fact, in the plucked-string filter
we have so far, D is the sum of the integer buffer length, L, plus one-half sample due
to the lowpass filter, so D is rot an integer. What we would like is a way to introduce
additional delays of fractions of a sample period in the feedback loop. That would
enable us to fine-tune the delay D and hence the pitch.

In fact, what we’d like is a filter that introduces, or comes close to introducing, an
arbitrary fractional delay, but has no effect on the magnitude of the frequency




Chapter 6 Comb and String Filters

response around the feedback loop. We already have a loop with the lowpass charac-
teristic we want for the plucked-string sound, and we don’t want to tamper with a
good thing. The idea is to try to construct a filter that has no effect on the magnitude
of phasors, no matter what their frequency. Suppose we start with a pole at z = p,
where p is some real number. Maybe we can add a zero to the filter transfer function
so that the effect of the pole on the magnitude response will be canceled. Where
should we put the zero? One answer is: the same place — that will cancel the effect
of the pole perfectly. But, of course, that accomplishes nothing; it gets us back to a
unity transfer function, and has no effect on the phase response.

Putting the zero at —p doesn’t do the trick. If p is positive, for example, the pole
will have a lowpass effect, and a zero at —p will have the same effect. The result will
be to exaggerate rather than cancel the effect of the pole.

There aren’t many other places to try. How about putting the zero at z = 1/p?
That does put the zero closer to the lower than the higher frequency points on the unit
circle, so its effect will be highpass — opposite that of the pole. This sounds promis-
ing. Let’s look at the magnitude response, using Fig. 6.1. The vector from the pole to
an arbitrary point on the unit circle is labeled with length B, and the corresponding
vector from the zero is labeled with length C. The point on the unit circle is at fre-
quency 0 radians per sample.

z-plane

frequency axis

Fig. 6.1 Pole-zero diagram and some geometry for the first-order allpass
section.

Recall that the magnitude response at frequency 6 due to a zero is the length of the
vector from the zero to the point on the unit circle at angle 8 (Section 6 of Chapter 4).
Similarly, the magnitude response due to the pole is the reciprocal of the length of the
vector from the pole to the point on the unit circle. Therefore the magnitude response
of the filter with both the zero and pole is the ratio of these lengths, C/B. Let’s try to
put this in terms of 6 and the constant p.

We can express B in terms of p and 6 using the law of cosines:

B? = | + p2-2pcos8 6.1)

Similarly, we can write C in terms of p and 0 using the same law:

§6 First-order allpass filter I35

C? = 14+1/p? ~ 2(1/p)cosé 6.2)
Multiplying Eq. 6.2 by p? yields the right-hand side of Eq. 6.1, so
piC? = B? (6.3)

or, forming the square of the magnitude response C/B:
cl/B* = 1/p? (6.4)

This is even better than we could have hoped for: The magnitude of the frequency
response is perfectly independent of frequency! This sounds almost magical, but it is
correct: if you place a zero at the reciprocal of the real pole position, the filter has a
magnitude response that is absolutely constant with respect to frequency. All frequen-
cies are passed with equal weight. We call such filters allpass filters.

Before we go on, remember that it is perfectly acceptable to have a zero outside
the unit circle. A pole outside the unit circle causes instability, as noted in Section 2 of
Chapter 5. But zeros are tamer creatures, and we can put them anywhere in the z-
plane. This makes the allpass construction feasible. .

We want to look at the phase response of our single-pole, single-zero allpass filter,
but first let’s construct the transfer function corresponding to the pole and zero in Fig.
6.1:

Hz) = K m%wl_mm (6.5)

where K is any constant, and we’ve used the parameter a to avoid minus signs; the
pole is at the point z = —a. We have the freedom to choose the constant factor K any
way we want; it is convenient to choose it to force the transfer function to have the
value one at zero frequency, the point z = 1. Setting #(1) = ! gives us K = a, and
hence the transfer function is

' +a

H(z) = o
1 + az

(6.6)

As usual, we’ve written the transfer function in terms of 2!, the delay operator.

input x a output y

Fig. 6.2 Signal flowgraph for a first-order allpass filter.

The allpass filter we’ve just derived is a combination feedforward and feedback
filter. If we choose to implement the feedforward part before the feedback part, we get
the signal flowgraph shown in Fig. 6.2, corresponding to the filter equation
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Y= ax, + X, — ay,. 6.7)

See Problem 5 for a more efficient implementation.

\lipass phase response

We finally get to the phase response of the allpass filter, the reason we started looking
at it in the first place. When we get its phase response ¢, it will tell us how much a
phasor of frequency o applied to the filter will be delayed. To be specific, suppose we
apply the phasor e/®' as input. The output signal will be the phasor of unit magnitude
with its phase shifted by ¢():

N\e.&‘..isv - N\.et + ¢(w)/w) .

The right-hand side of Eq. 7.1 shows that the phasor is shifted by ¢(w)/w samples.
The phase response ¢(w) is usually negative, so —¢(w@)/w represents a delay, called
the phase :.&@.4 Iz general, this phase delay is a function of the frequency . All this
checks with the discussion in Section 7 of Chapter 4, where we pointed out that
exactly linear phase in a feedforward filter results in a constant delay. What we're
looking for in the allpass filter is a phase response that is at least approximately linear.
Remembering that, let’s find ¢(w) for the allpass filter.

The way to start calculating either the magnitude or the phase response is to
replace z by e/* in the transfer function, Eq. 6.6, to get the frequency response

e +a
H(w) P (1.2)

We could now find the phase response ¢(®) by finding the real and imaginary parts of
the numerator and denominator, and using the arctangent function as follows

= Amag {numerator } i
¢(w) = arctan { Moo arctan | 2 { denominator }

Real {numerator } Real {denominator } a3

in analogy to the magnitude calculation we did in Section 5. Instead, I'm going to be a
little tricky, in order to get the result in a particularly convenient form.
The idea is to try to introduce some symmetry in Eq. 7.2 by multiplying the
numerator and denominator by ¢/*/%;
eI 4 gelv?

Hw) = —————
e/ 4 ge i

(7.4)
A good thing has now happened: We’ve succeeded in making the denominator very
similar to the numerator. In fact, the only difference between them is that one is the
complex conjugate of the other. If we set the numerator to re/¥*, the denominator is
re™/¥® and the ratio can be written

relve

= £ o plvw
Ho) =~ = e (1.5)

" The term phase delay is used to distinguish this from group delay. See the Notes at the end of this chapter.
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This shows that the phase response §(w) is simply 2y(w), twice the phase angle of the
numerator -in Eq. 7.4. (As a side effect, it also confirms that the magnitude of the
transfer function is unity.) The numerator can be written

(a + )cos(w/2) + j(a — 1)sin(w/2) (7.6)
so the phase response of the allpass, finally, is

o(w) = —2arctan 1-9im (0/2) (1.7
1 +a

This form for the phase is compact and pretty, but it’s also particularly illuminat-
ing if we focus our attention on low frequencies. When x is small, tanx = x, and this
gives us the following low-frequency approximation

1 -a
= - — = - ﬂm
o(m) el dw (7.8)
where we’ve defined
§ = |_|l|n» a9
1 +a

The varinble 8 is an approximation to the phase delay —~¢(w)/w. From our discussion
at the beginning of this seciion, the phase delay of the allpass filter is approximately
equal to & for low frequencies. We can also solve for a in terms of &:

1 -3
a= T (7.10)
which is a handy formula if we specify the phase delay.

In practice a must always be less than one (why?), so & is always positive. Further-
more, there is not much point in trying to approximate delays greater than one sample
with the allpass, because we can always take care of the integer part by absorbing it
into the buffer used to implement the loop delay, the integer L. We can therefore res-
trict 8 to the range between 0 and 1, which is equivalent to restricting a to the same
range.

Figure 7.1 shows plots of the phase response of the allpass filter for the ten values
of a corresponding to & = 0.1, 0.2, ..., 1.0 samples. As predicted, the phase looks
linear at low frequencies, with slope approximately equal to ~ 8. The phase delay
~6(®)/ gives us a better idea of the quality of the approximation, and is plotted in
Fig. 7.2 for the same range of 8. We see that the allpass delivers close to the desired
delay at low frequencies. The errors are quite small for frequencies below 0.05 fi At
the frequency 0.05f,, for example, which is 1102.5 Hz at a sampling rate of 22,050,
the error is only 0.0031 samples for 8 = 0.5 samples. At the higher frequency of
0.2f,, the error is up to 0.0546 samples at the same 8.

Notice also from Fig. 7.2 that the allpass filter’s approximation to constant delay is
better for values of delay near 0 or | sample than it is near 0.5 samples. Think of it
this way: a delay of a fraction of a sampling interval actually interpolates the signal
between sample values. Inferpolating midway is most difficult, because that point is
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farthest from known sample values. Still, the one-zero, one-pole allpass filter does a
reasonably good job at all delays for low frequencies.

phase response, radians

[ 0.1 » 0.3 04 0.5
frequency, fractions of sampling rate

Fig. 7.1 Phase response for the first-order allpass filter; from the top, the
prescribed delays § are 0.1, 0.2,...,1.0 samples.

delay response, samples

03 0.4 0.5

frequency, fractions of sampling rate

Fig. 7.2 Delay response for the first-order allpass filter; from the bottom,
the prescribed delays & are 0.1, 0.2,...,1.0 samples.
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All our work on the allpass filter has paid off. We’ve shown that it provides an
effective and efficient way to tune the delay in a feedback loop. Now let’s put the
plucked-string instrument together.

8 Tuning plucked-string filters

Figure 8.1 shows the finished plucked-string filler. We have two main points left to
discuss: the final details of tuning and the selection of the input signal.

The tuning of all the harmonics simultaneously with the allpass filter is not possi-
ble; from the plot of phase delay we see that the upper harmonics will have greater
relative delay than the fundamental. That is, the upper partials will be flat. Jaffe and
Smith [1983] suggest that this is not such a bad thing perceptually, and recommend
tuning the filter so that the fundamental frequency is exactly correct. Let’s run through
an example to see how they do this.

input x output y
b lowpass allpass

Ih

[ N.h le

Fig. 8.1 Tunable plucked-string filter.

Suppose we want the lowest resonance of the plucked-string filter to occur at pre-
cisely 1000 Hz, using a sampling rate of 22,050 Hz. This corresponds to a loop delay
of 22,050/1000 = 22.05 samples. Remember that the loop delay due to the buffer
and lowpass filter is L + /5 samples, so we should choose L = 21 to keep the & of our
allpass filter in the range between zero and one sample. We then wind up with a
desired phase delay of 8 = 22.05 - 21.5 = 0.55 samples.

At this point we could use the approximate formula for the allpass filter purameter
a in terms of specified phase delay, Eq. 7.10. But it would be best if we could get the
frequency of the fundamental resonance exactly right. To do this, we stipulate that the
negative of the exact phase response at the frequency wg (from Eq. 7.7), divided by
the frequency w,, be equal to the desired phase delay &:

2 Il -a

$ = Slcw::m: :_luﬂszeo\Nv (8.1)

By a stroke of luck, we can solve this exactly for the allpass filter parameter « in terms
of § [Jaffe and Smith, 1983}:

in((} - §)wg/2
o= w:: )0o/2) 82)
sin((1 + 8)wy/2)
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Notice that for small g, this reduces to the approximate formula
(1 = 8)/(1 + 8), as we would expect. Our example, with @g = 2x-1000/22,050
radians and & = 0.55 samples, results in a = 0.292495. The approximate formula for
a, Eq. 7.10, yields a phase delay of 0.552607 samples instead of the target 0.55 sam-
ples, about 0.5 percent high. Of course, the relative error in terms of the total loop
delay of 22.05 samples is much smaller.

There are quite a few twists on the basic plucked-string filter idea, many men-
tioned in [Karplus and Strong, 1983} and [Jaffe and Smith, 1983]. I'li mention some
of them in the Problems. But we’ve skipped a basic one, which I'll mention here: The
initial excitation of the filter should be chosen to provide lots of high frequencies.
This lends verisimilitude to the resulting note, ostensibly because the initial vibration
of a real string has a healthy dose of high-frequency energy. The usual way to accom-
plish this is to start with an initial burst of random numbers, which I did to produce
Fig. 3.3.

The output of the plucked-string filter is almost, but not quite, periodic. In some
sense its musical quatity depends both on its being close to periodic (so that it has a
pitch), and on its not being periodic (so that it’s interesting). In the next chapter we’re
going to develop the mathematical tools we need to understand perfectly periodic sig-
nals, paving the way for dealing with completely general signals.

AAAANAAA s AANNANANANANNANANAA A

Julius Smith has pioneered work on applying waveguide analogies to computer music.
The following is a useful general article, with lots of references to related work:

J. O. Smith, “‘Physical Modeling using Digital Waveguides, Computer
Music Journal, vol. 16, no. 4, pp. 74-91, Winter 1992.

Perry Cook has developed some striking applications based on these ideas. See, for
example:

P. R. Cook, ““Tbone: An Interactive WaveGuide Brass Instrument Syn-
thesis Workbench for the NeXT Machine,”” Proc. International Computer
Music Conf, San Francisco, International Computer Music Association,
pp. 297-300, 1991.

P. R. Cook, ‘‘SPASM, a Real-Time Vocal Tract Physical Model Con-
troller; and Singer, the Companion Software Synthesis System,” Com-
puter Music Journal, vol. 17, no. 1, pp. 30—44, Spring 1993.

The following back-to-back articles are a rich source of interesting ideas for
extending and improving the basic plucked-string filter.

[Karplus and Strong, 1983] K. Karplus and A. Strong, *‘Digital Synthesis
of Plucked-String and Drum Timbres,”” Computer Music Journal, vol. 7,
no. 2, pp- 43-55, Summer 1983.
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[Jaffe and Smith, 1983] D. A. Jaffe and J. O. Smith, ‘‘Extensions of the
Karplus-Strong Plucked-String Algorithm,”” Computer Music Journal,
vol. 7, no. 2, pp. 5669, Summer 1983.

Paul Lansky’s pieces *‘Night Traffic’* and ‘‘Sound of Two Hands’" are intriguing
examples of using comb filters in computer music. His ‘“Now and Then’’ uses
plucked-string filters. These and other pieces are on his CD HomeBrew, Compact Disc
BCD 9035, Bridge Records, 1992. Lansky uses digital signal processing and algo-
rithmic techniques in much of his music. He comments in the liner notes to this disc
that these pieces **. . . are attempts to view the mundane, everyday noises of daily life
through a personal musical filter.””

Add nonlinear distortion and feedback to the plucked-string filter and you get a
versatile digital version of a rock guitar. Charles Sullivan shows how in the following
paper, which makes ingenious use of many of the ideas we’ve studied up to now:

C. R. Sullivan, **Extending the Karplus-Strong Algorithm to Synthesize
Electric Guitar Timbres with Distortion and Feedback,"”. Coriputer Music
Journal, vol. 14, no. 3, pp. 2637, Fall 1990.

The family of allpass filters mentioned in Problem 9 is derived in

[Fettweis, 1972] A. Fettweis, ‘A Simple Design of Maximally Flat Delay
Digital Filters,”” IEEE Trans. on Audio and Electroacoustics, vol. AU-20,
pp. 112-114, June 1972.

That paper actually provides a simple derivation of earlier results of J.-P. Thiran; for
example

J.-P. Thiran, ‘‘Recursive Digital Filters with Maximally Flat Group
Delay.’” IEEE Trans. on Circuit Theory, vol. CT-18, pp. 659-664, Nov.
1971.

The distinction between phase and group delay is discussed in

A. Papoulis, The Fourier Integral and its Applications, McGraw-Hill,
New York, N.Y., 1962.

ANANAINNAA e AANANNNV VNN A

1. An inverse comb filter is followed by a comb filter with the same parameter, as in
Eq. 1.5. Construct an input signal x for which the output w of the comb filter is dif-
ferent from x. Hint: From the discussion x must be nonzero for arbitrarily negative t.

2. Here's a project for video gamesters. Write an interactive flight simulator whose
landscape is the magnitude response of a feedback filter over the z-plane. Don’t try to
go over a pole!

3. [Karplus and m,:o__m. 1983], [Jaffe and Smith, 1983] Is the plucked-string filter
stable if we use the value R = 1? (If you want a hint, peek at the next problem.)




