Logic Design 811

s al

We now recognize that the expression for S describes the exclusive-OR operation,
whereas C indicates the AND operation. Therefore, these functions can be imple-
mented simply with an exclusive-OR gate and an AND gate, respectively, as shown
in Fig. 12.3a. This logic circuit with two inputs A and B, and two outputs S and C,
is known as a half-adder. A block diagram for a half-adder is shown in Fig. 12.3h.

(a) b)

Fig. 12.3 (a) Half-adder, and (b} block diagram of half-adder.

;! Now let us see how we can extend the concept of a half-adder. First consider the
. example of adding (93),, = (1011101), and (121)49 = (1111001), as shown below.
1 11 1 «-carries

1 011101

+ 1 1 1 1 0 0 1t

I T0101 10

T

LSB

“In determining the least significant bit (LSB)—the bit on the extreme right—?2 bits
- are added together. This can be accomplished with a half-adder. To obtain any other
'bit, however, there must be the capability to deal with carries. In general, given two
.n-bit binary numbers A—Aps . . . A3AA\Ag and B,_\B,_, . . . B3B,BBy, the
rocess of addition is described as follows:

CoCraiCresy . . . GGG,
AsAny . . . AsAA LA,
+ B, \B,,...B;B,BB,
SnS8—1Sn—2 - - - 535,5, 5

fere S, is the sum of A;, B, and Cifori=1,2,3...,n—1,and Cy, is the
ting carry. This means that the sums S, 82,83, . .., 8,2, S, are formed as
carries G, C, . . . , Cn-2, Cy—y, C,, according to Table 12.3a. Furthermore,
le 12.3b indicates how to obtain So and C,. (This is a half-adder truth table.) In
tion, S, = C,. The result of adding the two given binary numbers is the binary
iber S,,S,,_IS,,-Z e S352S1S0.




812 Digital Systems

Table 12.3(b) Truth Table

Table 12.3(a) Truth Table for S; and Cixs
for Sy and C;.

fori:1,2,...,n—1.

—_——o -2 o2

—“—"—‘P-‘OOOO

= Z,‘—B_,'C,' + ZiBiC_i =+ AiB,‘Ci + AiB,'Ci (125)

and

CH—] = My + ms + mg + my = K,—B,Ci + AiEiCi + A,'B,‘—C—i + AiB,‘C,‘ (126)

The Karnaugh map for S, is given in Fig. 12.4. From this map, we see that the
expression for S; cannot be simplified as a sum of products. On the other hand, the
has the form of Eq. 12.2 and the Karnaugh map in Fig. 12.2a

expression for Civt
nas is Bq. 12.3. In other words, we can put C,,1 in the

and, therefore, can be writte
form

C,‘+1 = A,’B,‘ + BiCi + A,‘Ci (127)

r S; and C; can be implemented by using the two-level AND-OR
ig. 12.5. A logic circuit, such as the one given in Fig. 12.5,
C; and whose outputs are S and C;4, @8 described by Eq.
is called a full-adder. A block diagram for a full-

The expressions fo
logic circuits shown in F
whose inputs are 4; B;,
12.5 and Eq. 12.7, respectively,
adder is shown in Fig. 12.6.

Fig. 12.4 Karnaugh map for S-




Logic Design 813

A
2=
c—i_J
A ——r g
s— b
c— b
E :
- D=
i E,.
Al }
Ax — ; y
B — G —
c, —i.

(a) (b)

Fig. 12.5 AND-OR implementation of (a) S;and (b) Ci.q.

Fig. 12.6 Block diagram for a full-adder.

By connecting a half-adder and n — 1 full-adders as shown in Fig. 12.7, we get
a combinational logic circuit that will enable us to add any two n-bit binary numbers
Ai1A,y . . . A3AA\Apand B,_\B,_, . . . B3B,B,B,,.

An important alternative to the full-adder implementation given in Fig. 12.5 may
also be derived. Although Eq. 12.5 is in simplified sum-of-products form, we can
manipulate S; algebraically as follows:

C’l Sn =1

12.7 An n-bit binary adder.



814 Digital Systems

But note that

Ei‘éi =+ B,C = —B‘it‘,' + BiC,‘ = (Eiéi + B,‘C,‘)

1

(B,' + C,)(E, + —C‘,) = BiEi + Biﬁi + Eici + C,‘E,‘

i

BC; + B,

If we define D, = B,C; + B,C; then D; = B,C; + BC, = B.C; + B,C; and we can
write

S,‘ = A,‘Di + AiDi = A,‘ ® D,’

Di - EiCi + Bl»C,- = Bi @ Ci
In other words, we can write S; as
S;=A,®(B;®C)

However, since the exclusive-OR operation is associative (see Problem 11.39 on p.
805), it is unambiguous to write

Si = Ai (’B B,’ @® C,'
In addition to this, from Eq. 12.6, we have

= (AB; + AB)C; + AB(C; + C) = (A ©® B)C; + AB,

A,®8)C

i (A, @B)C +AB

Fig. 12.8 Full-adder consisting of two half-adders and an OR gate.



Logic Design 821

be that such packages produce the exact implementations that are desired, or that
such realizations can be obtained by appropriately connecting ICs together. This
approach to design is our next topic of study.

12.2 MSI and LSI Design

In the preceding section, we saw how to design an n-bit binary adder (see Fig. 12.7)
using a half-adder and n — 1 full-adders. To be able to include the case of a possible
previous carry, the half-adder can be replaced by a full-adder. Figure 12.17 shows
this more general binary parallel adder for the case that n = 4. Such a device is
available as an MSI package (e.g., the TTL 74283 IC), as are other n-bit (n+4
binary parallel adders. By connecting such ICs together appropriately, larger adders
can be formed. For example, by connecting two 4-bit adders as shown in Fig. 12.18,
we get an 8-bit binary parallel adder.

; A, B, G, A, B, G A, B, C 4, B, G
1 l l l l \ 1 l y l l
Full-Adder Full-Adder Full-Adder ' Full —Adder
l l C, 1 c, l C, l
C, S5 S, S, M

Fig. 12.17 A 4-bit binary paraliel adder.

input bits

Propagation
Delay, ns

10
6
33
3
10
2

25
e A—

output bits output bits

ig. 12.18 An 8-bit binary parallel adder.




822 Digital Systems

Not only can adders be used to construct larger adders, but they also can be used
for other types of applications as well. An example of such a situation is the con-
version from BCD to the excess-3 code. Table 12.7 shows the BCD representations
of the decimal digits and the corresponding words of the excess-3 code. Note that
the words of the excess-3 code can be obtained by adding the binary number 3
(0011) to the corresponding BCD representations of the decimal digits. Because of
this property, we can use a 4-bit binary parallel adder if we make B, = B, = 1 and
B, =By =G = 0. Doing this will result in the desired addition, and thus produce

outputs that are the appropriate excess-3 code words. An MSI implementation of
such a code converter is shown in Fig. 12.19.

“Word Correspondence with BCD.

Table 12.7 Excess-3 Code

Excess-3 Code

S

S S;

_'—OOOOOOOO

OO—"—"—"—'OOOO
O'—"—‘OO>—-'—‘OO>—
O>—‘O>—‘O~—‘O'—-O»—

—‘OP—O-—‘O——O'—‘O
Y. e I R e

'—‘OOCO'—‘——‘*—‘—-‘O

OO*—"—‘OO-—‘r—OO

BCD input

ignore

excess-3 output

Fig. 12.19 A BCD-to-excess-3-code converter.



Logic Design 823

—\#/'BCD Adders

There is an alternative to the binary addition of numbers—specifically, an alternative
is decimal addition. By this we mean the addition of decimal digits in BCD form.
Suppose we perform binary addition on the BCD representations of two decimal
digits. If the sum of the two digits is 9 or less, then performing binary addition
results in the appropriate number. If the sum of the digits is greater than 9, however,
then what results from the addition is the binary number representation of the sum,
not the BCD representation. Table 12.8 lists the sums that result from the binary
addition of decimal digits in BCD form, and it also shows the BCD versions of these
sums. Even though 9 + 9 = 18, the table extends to include sums equaling 19 so
that carries from a preceding addition can be included.

By applying two decimal digits in BCD form, say A3A,A Ay and B3B,B,B,, to a
4-bit binary adder (see Fig. 12. 17), we obtain a sum 84838,5,5, in binary form, where
84 = Cy is the carry bit. If this binary number is 9 or less, then this sum is also in
BCD form. If this binary number is greater than 9, however, we must modify the

Table 12.8 Sums of BCD Digits in Binary Form and BCD Form,

Sums in Binary Form Sums in BCD Form
S, S;3 S, S So D, Dy D, D, D,
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 1 1
0 0 1 0 0 0 0 1 0 0
0 0 1 0 1 0 0 1 0 1
0 0 1 1 0 0 0 1 1 0
0 0 1 1 1 0 0 1 1 1
0 1 0 0 0 0 1 0 0 0
0 1 0 0 1 0 1 0 0 1 '
0 1 0 1 0 1 0 0 0 0
0 1 0 1 1 1 0 0 0 1
0 1 1 0 0 1 0 0 1 0
0. 1 1 0 1 1 0 0 1 1
! 1 1 1 0 1 0 1 0 0
1 1 1 1 1 0 1 0 1
0 0 0 0 1 0 1 1 0
0 0 0 1 1 0 1 1 1
0 0 1 0 1 1 0 0 0
0 0 1 1 1 1 0 0 1




824 Digital Systems

sum to get its BCD form. From Table 12.8, we see that if we add the binary number
6 (0110) to the sum in binary form, we get the sum in BCD form. But how can we

state this in logical terms?
From Table 12.8 we have that the binary number 6 should be added to a sum in

binary form when S; = 1, OR S;=1ANDS, =1,0R Sy = 1 AND S, = L. This
description corresponds to the Boolean function

F= S4 + S}Sz + S}Sl

As a consequence of this discussion we can realize a BCD adder, that is, a logic
circuit that adds decimal digits in BCD form, by using two 4-bit binary adders as
shown in Fig. 12.20. Two decimal digits in BCD form are added together in binary

4-bit binary adder

C,=S, s, 5, s, So
F

D,

S3’ S, 5 Sy

. 4-bitbinary adder




Logic Design 825

' by the top 4-bit adder. If the resulting binary number $,5:5,5;5, is 9 or less, then
e 8453825180 = 83828180, F = 0, and 0 is added to S,5,5,5, by the bottom 4-bit adder.

If the resulting binary number S,55,5,S, is greater than 9, however, then F = |
n and 6 is added to S35.5,5, by the bottom 4-bit adder. Because it is a 4-bit adder and

S, is not applied to its input, the output carry D, cannot be obtained for the sums
16, 17, 18, and 19. This is no problem because a carry results when F = 1. Therefore,
we can use the output of the OR gate to produce D,. Note, too, that the bottom 4-
bit adder employs no carry from a preceding stage and, therefore, no input for such
a carry is indicated.

c Even though we have spent time discussing how to construct them from two 4-
s bit adders, BCD adders are available as MSI packages (e.g., the TTL 82583 IC).
y Despite this, it is worthwhile studying how to combine MSI circuits that implement

one kind of function in order to produce logic circuits that realize another type of
function.

Magnitude Comparators

Another very important digital logic function is performed by a magnitude com-
parator, and such a device is also available in MSI form (e.g., the TTL 7485 IC
is a 4-bit magnitude comparator). As its name suggests, the function that is per-
formed is the comparison of two numbers A and B, and the determination of whether
-A<B,A>B,orA =B

Given two n-bit binary numbers A = A4,_,. . .AA/Apand B =B, ,. . . B,B\B,,
n n-bit magnifude comparator therefore will have 2n inputs and 3 outputs C, D,
nd £, which signify A < B, A > B, and A = B, respectively. (For example, C =
,D=1,E = 0= A> B.) A truth table characterizing magnitude comparison has
" rows—therefore, the construction of such a table will be avoided.
Specifically, let us consider the case that n = 3. In other words, suppose that we
wish to compare the 3-bit binary numbers A = 4,4 A, and B = B,B,B,. The equality
f a pair of bits A; and B, can be determined from Table 12.9. From this truth table,
ve see that A; = B, is described by the Boolean expression F; = A;B; + AB; =
{; © B, We wish to have the output C = 1 when A < B. This inequality occurs

gable 12.9 Truth Table for the
uality of a Pair of Bits.




826 Digital Systems

when A, = 0 (A, = 1) AND B, = 1, OR when A, = 0 (A, = 1) AND B, = 1
given that (AND) A, = B, (F; = 1), OR when A, = 0 (Ay = 1) AND By = 1 given
that (AND) A, = B, AND A, = B, (F, =1 AND F, = 1). This description can be
characterized by the Boolean function

C = Ksz + Z]Ble + ZOBOF1F2

where F, = A,B, + A\B, = A, O B and [, = A,B, + ABy, = Ay O B, are
exclusive-NOR functions.

Proceeding in a similar mann
function

er for the case that A > B, we get the Boolean

D = AzEz + A1§1F2 + A()EoFle

) -

Fig. 12.21 A 3-bit magnitude comparator.



Logic Design 827

\Y/Finally, for the case that A = g (ie., A4, = B, AND A; = B AND 4, = By),

we have that

E=FEFF = (4,0 B)A, O B)@4, O By)

A logic circuit for a 3-bit magnitude comparator is shown in Fig. 12.21.

Encoders

In Section 11.2, we mentioned that various pieces of information could be repre-
sented by a code, that is, a set of binary sequences. As a simple example, consider
the four pieces of information Ay, As, A;, and A4 To have four distinct binary
sequences, each code word must consist of a minimum of 2 bits. Even though we
can use sequences of more than 2 bits, for the sake of brevity, let us pick code words
with 2 bits as given in Table 12.10. This table indicates that the code words for Ay,
Ay, A3, and Ay are 00, 01, 10, and 11, respectively.

Table 12.10 A Binary Encoding.

Pieces of
Information

—D
(A >B)

Suppose we wish to construct a logic circuit to encode each piece of information.
other words, when A; = 1, we want 00 to be produced; when A, = 1, we want
to result, and so on. We will also assume that only one piece of information is
Icoded at a time (e.g.,if A3 = 1, then A 1 = Ay = Ay = 0). Under these conditions,
from Table 12.10, we can write the Boolean expressions

and BQ = Az + A4

mbinational logic circuit that implements these functions is shown in Fig. 12.22.
€ that input A4, is not connected to anything.) Such a device is called an encoder.
Deral, an encoder for m pieces of information has m inputs (one for each piece
‘Ormation) and n outputs, where 2" > . This can be called an m-to-n-line
£i8nated m X n) encoder.,




828 Digital Systems

T TTT—
Table 12.11 A Priority Encoding.
1 Pieces of Code .
) Information Words
A — A1 A2 A3 AA B‘l 82
o e B i
A, —_—D— 1 ! X X x 0 0
0 1 X X 0 |
:. B, 0 0 | X 1 0
0 0 0 l 1 1

Fig. 12.22 Encoder corresponding to Table
12.10.

Now let us consider the situation that two or more inputs are equal to I at the
same time. For such a case, an encoder’s output has no meaning—two pieces of
information cannot be encoded at the same time. Therefore, let us assign a priority
to the information to be encoded. For the example above, let the subscript of the
information indicate its priority, that is, A, has the highest priority, A, is second, A,
is third, and A, is last. Thus if more than one input is I, the piece of information
with the highest priority is encoded. These conditions are described by Table 12.11.
Here the symbol X indicates a don’t-care condition. For example, if A; = 1, it does
not matter whether A, = 0 or A; = 1 since A; has priority over Ay, the resulting
encoding is 10. From Table 12.11, we can write the Boolean expressions

B, = AA; + AAAA, = AjAy(As + Ay = AAN(Ay + A
and

B, = AA, + AAAA, = A4y + AARAy) = Ay(A; + AsAL)

A logic circuit for such an encoder, known as a priority encoder, is shown in Fig.
12.23.

A

— >0

Fig. 12.23 A 4-to-2-line priority encoder.




Logic Design 829

\’/’ Because of its simplicity of construction, ordinary (nonpriority) encoders do not

come in the form of MSI packages. Priority encoders, however, are available as MSI

Code units. For example, the 74147 IC is a 10-to-4-line decimal-to-BCD priority encoder,
Wo.r(,jfk " and the IC 74148 is an 8-to-3-line octal-to-binary priority encoder.
B, B,
0 0
0 | Decoders
1 0
The converse of the process of encoding is called decoding. In general, an n-to-m-
1 1 . ., e
L . line decoder has n inputs and m outputs, where 2" > m. For each n-bit put, there

is a unique output that is equal to I—the remaining outputs being equal to 0.
An example of a 3-to-8-line decoder is a device whose input is a 3-bit binary
number between 0 and 7, and whose output is the corresponding octal digit. The

° truth table describing this decoder is given by Table 12.12, where Dy through D,
f designate the octal digits through 7 respectively. From this table we see that

)/ i

E D; = m fori:O,l,2,3,4,5,6,7

3

1 Therefore, each output function is one of the minterms of the input variables. The
: implementations of these Boolean expressions with logic circuits should be a routine
8 exercise by now, so they are omitted. Do note, however, that each output function
o

can be implemented with one (3-input) AND gate.

~ Unlike (nonpriority) encoders, decoders are available in MSI form (e.g., the TTL
74138 IC is a 3-to-8-line decoder).

- The 3 X 8 decoder characterized by Table 12.12 is an example of a decoder with
1 inputs and m = 2" outputs. The output functions for such a device are all the
terms of the input variables. Since any Boolean function can be expressed as a

Outputs
D, D, D, Dy D, Ds Dg D
0 1 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0
I 0 0 | 0 0 0 0 0
l 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1




830 Digital Systems

connected to an OR gate to implement

sum of minterms, this type of decoder can be
g. 12.5 and Eq. 12.6, we know that a

any Boolean function. For example, from E
full-adder is characterized by the Boolean functions

S, =m + m 4+ my + 0y and Ciyy = my + ms + mg + My

d a 3-to-8-line decoder such as the one described
he realization.

Therefore, we can use OR gates an
plement a full-adder. Figure 12.24 gives t

by Table 12.12 to im

Fig. 12.24 Realization of a full-adder with a 3.to-8-line decoder.

Multiplexers

ircuit typically with 2" inputs, one output, and n
h a device, the n selection lines are used to make
f this, a digital multiplexer (desig-

A digital multiplexer is a logic ¢
selection variables or lines. For suc
the output equal to one of the inputs. Because 0

nated MUX) is also referred to as a data selector.
Figure 12.25 shows a realization of a 4-to-1-line multiplexer (designated 4 X 1

MUX). For this case (n = 2) there are four input lines labeled Io, I, L. 3 tWO
selection lines labeled A, B; and one output line F. Note that when A = B = 0, then
the output of the top AND gate is ABI, = I, and the output of each remaining AND
gate is 0. Thus F = Io. Similarly, when A = 0 and B = 1, then the output of the
second (from the top) AND gate is ABI, = I, and each of the other AND gates has
an output of 0. Thus F = I,. Continuing in this manner, we sec that the output is
puts—which one depends on the selection-line values. These

d by Table 12.13. The MSI representation of a 4-to-1-line
Boolean expression for the output F

equal to one of the in
results are summarize
multiplexer is shown in Fig. 12.26. Note that a
is given by

F = ABI, + ABI, + ABI, + ABI; (12.8)



D

Logic Design 831

b

1,

Fig. 12.25 A 4-to-1-line multiplexer.

Table 12.13 Table
Characterizing a 4-to-1-Line

Selection lines

Multiplexer.
Selection
Lines Output

A B F inputs output
0 Iy
1 I
0 I : . o .
1 / Fig. 12.26 Circuit symbol of a 4-to-1-line

3 multiplexer.

Let us now see how we can use a multiplexer to implement Boolean functions.

ippose that we would like to realize the function F characterized by Table 12.14.
m this truth table, we can write




832 Digital Systems

Table 12.14 Truth Table for a
Boolean Function F.

b—‘h—‘b—‘)—-‘oooob
-~o-»—ooo -

Fig. 12.27 Realization of F with a 4-to-1-line
multiplexer.

This means that the 4-to-1-line multiplexer shown in Fig. 12.27 implements the
Boolean function F described by Table 12.14.

Demultiplexers

The converse process of multiplexing is demultiplexing. Specifically, a demulti-
plexer is a device with one input, n selection lines, and 2" outputs. For such a device,
the n selection lines are used to make one of the outputs equal to the input. Figure
12.28 shows a realization of a 1-to-4-line demultiplexer. For this case (n = 2) there
is one input line labeled E; two selection lines labeled A, B; and four output lines

Fig. 12.28 A 1-to-4-line demultiplexer.




0-1-line

—

Logic Design 833

labeled Dy, D,, D,, D;. Note that when 4 = B = 0, then the output of the top AND
gate is Do = ABE = E and the remaining outputs are D, = D; = Dy = 0. Similarly,
when A = 0 and B = |, thep Dy = ABE = F and Dy =D, =p, = Continuing
in this manner, we see that the input is transferred to one of the outputs—whijch one
depends on the selection-line values. These resuits are Summarized by Table 12.15.
The MSI representation of 3 1-to-4-line demultiplexer is shown in Fig. 12.29.

Selection
lines

Table 12.15 Table Characterizing a 1-to-4-line
demultiplexer. '

Selection
Lines

Outputs

outputs

Fig. 12.29 Circuit symbol of a 1-to-4-line
demultiplexer. ’

From Table 12.15, note that if we always have the condition that E = 1, then the
1-to-4-line demultiplexer becomes a 2-to-4-line decoder. On the other hand, if we
+ always have E = 0, then the device does nothing—al] the outputs are 0 regardless
_ of values of the selection lines. Thus We can use a demultiplexer as 3 decoder; to
this, we just set £ = 1 and we use the selection lines as the decoder inputs. In
ﬁlis case, E is referre

outputs

enable

30 A 2-t0-4-line decoder with an enable




