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Abstract

Operating systems and low-level applications are usually written in languages

like C and assembly, which provide access to low-level abstractions. These languages

have unsafe type systems that allow many bugs to slip by programmers. For exam-

ple, in 1988, the Internet Worm exploited several insecure points in Unix including

the finger command. A call to finger with an unexpected argument caused a buffer

overflow, leading to the shutdown of most Internet traffic. A finger application writ-

ten in a type-safe language would have prevented its exploit and limited the points

the Internet Worm could attack. Such vulnerabilities are unacceptable in security-

critical applications such as the secure coprocessors of the Marianas network [11, 21],

secStore key storage from Plan 9 [6], and self-securing storage [25].

This research focuses on safe language techniques for building OS components

that cannot cause memory or IO errors. For example, an Ethernet device driver

communicates with its device through IO operations. The device depends on FIFO

queues to send and receive packets. A mistake in an IO operation can overflow or

underflow the FIFO queues, cause memory errors, or cause configuration inconsis-

tencies on the device. Data structures such as FIFO queues can be written safely in

safe languages such as Java and ML but these languages do not allow the access to

the low-level resources that an OS programmer needs. Therefore, safe OS compo-

nents require a language that combines the safety of Java with the low-level control

of C.

My research formalizes the concurrency, locks, and system state needed by the

safety-critical areas of a device driver. These formal concepts are built on top of

an abstract syntax and rules that guarantees basic memory safety using linear and

singleton types to implement safe memory load and store operations. I proved that

the improved abstract machine retains the property of soundness, which means that

all well-typed programs will be able to execute until they reach an approved end-
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state. Together, the concurrency, locks, and state provide safety for IO operations

and data structures.

Using the OSKit from the University of Utah as a starting point, I developed

a small operating system. I ported the 3c509 Ethernet device driver from C to

Clay, a C-like type-safe language that uses a type system powerful enough to enforce

invariants about low-level devices and data structures. The resulting driver works

safely in a multi-threaded environment. It is guaranteed to obtain locks before using

shared data. It cannot cause a FIFO queue to overflow or underflow and it will only

call IO operations when invariants are satisfied.

This type-safe driver demonstrates an actual working application of the theoret-

ical components of my research. The abstract machine is powerful enough to encode

a given OS specification and enforce a provably matching implementation. These

results lead towards fundamentally secure computing environments.
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1 Introduction

Despite advances in programming languages and programming techniques, today’s

operating systems often contain bugs. These bugs can be exploited by malicious

hackers to allow undesirable actions to occur. For example, in 1988, the Inter-

net Worm exploited Unix’s finger command using a buffer overflow, leading to the

shutdown of most Internet traffic. Such vulnerabilities are unacceptable in security-

critical applications such as the secure coprocessors of the Marianas network [11, 21],

secStore key storage from Plan 9 [6], and self-securing storage [25].

Bugs are not just present in older operating systems. The SecurityFocus Vul-

nerabilities Archive [24] collects reports of security vulnerabilities found in current

operating systems and applications. Hundreds of bugs have been reported this year

alone. SecurityFocus also lists the consequences of the bugs including buffer over-

flows, code injection, circumvented read/write permissions, keystroke interception,

private information disclosure, and root password theft.

A study by Chou et al. [4] examined the number and location of bugs in the

Linux OS. The most frequent bugs found were:

• Calling blocking functions with interrupts disabled or a lock held.

• Returning NULL pointers from routines.

• Allocating stack variables that don’t fit on the fixed-size kernel stack.

• Making inconsistent assumptions about whether a pointer is NULL.

• Not checking array bounds or loop bounds from user input.

• Not releasing locks or double locking.

• Not restoring disabled interrupts.

• Using freed memory.

One reason for the presence of bugs in operating systems is that most are writ-
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ten in non-type-safe languages like C and assembly. Writing applications in a safe

language (Java, ML) would eliminate many vulnerabilities. Java, for example, can

detect NULL pointers and inserts run-time checks for array bounds. It also imple-

ments locks in clauses which both acquire and release so the releasing step cannot

be forgotten. Java’s garbage collector ensures that memory is not freed until the

operating system is done using it. However, safe languages such as Java and ML

are not used for operating systems programming because they do not easily give

programmers access to the low-level resources they need. For example, Java does

not allow the casting of one data type to any other data type. Only a limited set

of casts are allowed. Java also cannot perform the atomic operations provided by

assembly calls or make IO calls without calling C functions. C and assembly, while

not type-safe, provide easy access to such low-level abstractions.

This research focuses on type-safe language techniques for building OS compo-

nents that cannot cause memory or IO errors. For example, an Ethernet device

driver communicates with its device through IO operations. The device depends

on FIFO queues to send and receive packets. A mistake in an IO operation can

overflow or underflow the FIFO queues, cause memory errors, or cause configuration

inconsistencies on the device.

My research formalizes the concurrency, locks, and system state needed by the

safety-critical areas of an operating system. These formal concepts are built on top

of an abstract syntax and rules that guarantee basic memory safety using linear and

singleton types to implement safe memory load and store operations. Together, the

concurrency, locks, and state provide safety for IO operations and data structures.

I proved that the improved abstract machine retains the property of soundness,

which means that all well-typed programs will be able to execute until they reach

an approved end-state. Any well-typed program respects the abstractions of its

language. A type checker for a language that implements the abstract machine will
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catch violations of the driver’s safety abstractions.

Using the OSKit from the University of Utah as a starting point, I developed a

small multi-threaded operating system. The OS runs several network applications

including ping, and uses the 3c509 Ethernet device driver. I ported the driver from

C to Clay, a C-like type-safe language that matches the abstract machine. Chou

et al. [4] found that the device drivers, which accounted for 70% of the OS code,

accounted for almost 90% of the bugs. The researchers list possible explanations for

the unexpectedly high error rates of drivers. One likely explanation is that drivers

are written by a wide range of programmers who know the device very well but

may be unfamiliar with the kernel interface. The programmers are likely to make

mistakes and, using cut and paste, propagate the mistakes over many drivers. The

I/O hardware is often incorrectly documented which leads to programmers trying to

cope with an incorrect specification.

The resulting driver works safely in a multi-threaded environment. It is guar-

anteed to obtain locks before using shared data. It cannot cause a FIFO queue to

overflow or underflow and it will only call IO operations when invariants are satisfied.
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2 Type Systems and Safe Languages

Not all type systems are equally powerful; a weak static type system forces the

language to perform run-time safety checks. For example, type-safe languages like

Java and ML perform automatic run-time checks on array bounds. Unsafe languages

(C, C++) expect the programmer to include run-time checks. In a large program

such as an OS, there are likely to be many run-time bounds checks that are left

out or slow the program down considerably. The study by Chou et al. discussed

in section 1 found many forgotten bounds checks in Linux. The inserted run-time

bound checks are one reason that operating systems are not usually written in Java.

If these checks could be moved to compile-time, the program would have the same

safety guarantees without continual run-time bounds checks. For the purposes of

this thesis, safe means that a specification (such as Java’s “no bounds are violated”)

is enforced through compile-time and run-time checks.

In addition, none of the languages mentioned above are able to catch aliasing

errors automatically. An aliasing error occurs when several copies, or aliases, of

a system-state value are in existence and the system-state changes and then an

outdated copy is mistakenly used. Some aliasing errors could be caught by keeping

and checking reference counts but this would contribute to the already expensive run-

time checks. Compile time checks for aliasing errors would provide safety without

adding to the run time burden.

Advanced types such as integer arithmetic, singleton, and linear types offer a

compile-time solution. This section discusses static techniques for array bounds

check elimination and alias elimination.
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T // return type

array_get // function name

[int N, type T, int I; 0<=I && I<N] // type parameters

(Array[N,T] array, Int[I] i); // function parameters

void array_set [int N, type T, int I; 0<=I && I<N]

(Array[N,T] array, Int[I] i, T t);

Figure 1: These array access functions use singleton types and arithmetic com-

parisons to avoid run-time bounds checks.

2.1 Integer Arithmetic and Singleton Types

Usually, array bounds checks are required at run-time because the exact index into

the array and the exact size of the array aren’t known until run-time. If information

about the index and size was captured in the static type system, bounds checks could

be performed at compile-time rather than at run-time. Doing so requires a system

for statically reasoning about the run-time values of index and size.

Xi and Pfenning [31] added arguments to integer types and added arithmetic

capabilities (==, ! =, <, >, +,−) to their type system in order to make comparisons

between type arguments. These additions let them write invariants such as 0 ≤

index < size into their function types. To connect these type variables to the run-

time variables they used singleton types. A singleton type is a type with one element.

The singleton type Int[3] is the type of integers whose value is 3.

Together, the singleton types and arithmetic comparisons allowed them to encode

invariants about the run-time values of an index and array size. They demonstrated

how to eliminate run-time array bounds checks using these invariants. Though their

examples used ML, this section uses the syntax of Clay (a safe variant of C with

polymorphism).

The array access functions in Figure 1 avoid run time bounds checks on the array

access by using singleton types and arithmetic comparisons. The square brackets

after the function name contain type parameters and arithmetic comparisons on
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those parameters. The types of function parameters use the type parameters. The

type Array[N, T ] is an array of length N containing values of type T . The type

Int[I] is a singleton integer whose value is I. The array get function takes an array

of length N containing values of type T and an index with value I and returns a

value of type T . array set takes an array of length N containing values of type T ,

an index with value I, and a value of type T and returns nothing. These functions

and the array type are polymorphic and will work with any type of array. In this

example, the comparisons state that the index must be both greater than or equal

to 0 and less than the length of the array.

Type comparisons are checked at compile time. When the array get function is

called on an array and an index

Array[6,int] array = ...;

int x = array_get(array, 4);

where array has type Array[6, int] and 4 has type Int[4], the compiler compares the

input and parameter types and gets the following facts:

N == 6, T == int, I == 4

From there, the compiler generates the constraint

0 <= I && I < N

as shown in the function header. Using the above mentioned facts, this constraint is

equivalent to

0 <= 4 && 4 < 6

As long as these constraints are true, the function call is safe and won’t violate array

boundaries. Since this is checked at compile time, the code does not need a run-time

6



void swap

[int M, type T, int J, int K; 0<=J && 0<=K && J<M && K<M]

(Array[M,T] array, Int[J] j, Int[K] k)

{

let temp = array_get(array, j);

array_set(array, j, array_get(array, k));

array_set(array, k, temp);

}

Figure 2: This array swap function uses singleton types and arithmetic compar-

isons to avoid run-time bounds checks.

bounds check. Calls to the array set function generate similar constraints.

Figure 2 shows a more complex example of compile-time bounds checks. The

swap function swaps two values in an array using the array get and array set func-

tions defined in Figure 1. swap takes the indices of these values as singleton integers

to relate their values to the array length. The arithmetic comparisons between the

singleton integers and the array length ensure that the indices are legal array in-

dices. Assuming that a call to swap follows the invariants stated by its arithmetic

comparisons, the following facts are known:

0 <= J && 0 <= K && J < M && K < M

Inside the swap functions, there are two calls to array get. The first call uses the

facts known in the swap function and produces these facts and constraints:

N == M, T == T, I == J, 0 <= J && J < M

The second call produces the constraints:

N == M, T == T, I == K, 0 <= K && K < M

At a glance the facts known in swap imply the constraints in the two calls to

7



Array[6,int] array = ...;

let a = get_index_from_user();

let b = get_index_from_user();

swap(array, a, b);

Figure 3: A function call whose inputs are user entered without a run-time bounds

check is unsafe.

Array[6,int] array = ...;

let a = get_index_from_user();

int b = get_int_from_user();

if (0<=a && a<6 && 0<=b && b<6)

swap(array, a, b);

Figure 4: A function call whose inputs are safely user entered. The bounds check

makes the function call safe.

array get. These constraints allow the compiler to verify that calls to swap that

obey its input comparisons will make safe calls to array set and array get.

The constraints shown above are fairly simple to check. However, checking many

such constraints by hand would be tedious. Xi and Pfenning [31] showed that con-

straints produced by type checking can be solved efficiently using an automated

constraint checker such as Omega [23].

Some run-time bounds checks cannot be avoided. Statically type checking bounds

on user input can be difficult since the input values won’t be known until run-

time. With singleton types and arithmetic comparisons, the call to swap in Figure 3

generates the constraint

∅ =⇒ (0 ≤ J && 0 ≤ K && J < M && K < M)

which fails to type check since “nothing” cannot imply (0 ≤ J && 0 ≤ K && J <

M && K < M). To pass the type checker, the programmer needs to add an if-then

statement as seen in Figure 4 and only call swap if its invariants are met. Even

though this situation requires run-time bounds checking to be safe, the function

invariant helps because its presence forces the programmer to include a bounds
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LinArray[N,T] lin_array_set

[int N, type T, int I; 0<=I && I<N]

(LinArray[N,T] array, Int[I] i, T t);

LinArray[6,int] array_a = ....;

let array_b = array_a; // array_a is now invalid

lin_array_set(array_a, 4, 0); // fails: array_a invalid

lin_array_set(array_b, 4, 0); // array_b is now invalid

Figure 5: An array set function for linear arrays. A linear variable is invalid

between being read and being written.

check on the user input that might otherwise be forgotten. Safe languages such as

Java insert many run time bounds checks during compilation instead of requiring

the programmer to insert them.

2.2 Linear Types

There aren’t many easy ways to use run-time checks to avoid aliasing errors. Ref-

erence counting is sometimes possible but can have a high cost in running time.

Types based on the linear logic of Girard are used to prevent aliasing errors without

run-time checks [29].

A linear value has only one reference to it. A linear variable is able to be accessed

exactly once and cannot be duplicated or discarded. Any attempt to copy a linear

variable creates a duplicate but invalidates the original. Therefore, linear variables

are explicitly handed from one function to the next. Figure 5 shows a linear array.

Creating array b invalidates array a so future attempts to set index 4 to a 0 are

type errors. The second call to lin array set sets index 4 of array b to 0 but doesn’t

catch the returned array so array b also becomes invalid. A safe call to lin array set

would look like:

let array_b = lin_array_set(array_b, 4, 0);

This call invalidates array b so the lin array set function has the only valid copy

and then catches the array when it is returned and reassigns it to array b.
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void set_irq (int n); // Post: Interrupt request level=n

void f1 (); // Pre: level<=5, Post: level=5

void f2 (); // Pre: level=3, Post: level=3

set_irq(3); // Set the irq to 3

f1(); // Change the irq to 5

f2(); // Could deadlock if level!=3

Figure 6: A set of C function calls that depend on the interrupt request level.

The last function causes deadlock if it is called with the wrong interrupt level.

type IrqLevel[int N];

IrqLevel[N] set_irq [int N; 0<=N](Int[N] n);

IrqLevel[5] f1 [int N; 0<=N && N<=5](IrqLevel[N] irq);

IrqLevel[3] f2 (IrqLevel[3] irq);

IrqLevel[3] irq = set_irq(3); // Set the irq to 3

irq2 = f1(irq); // Use the irq

f2(irq); // Could still deadlock

Figure 7: A set of Clay function calls that depend on the interrupt request level.

The last function could still cause deadlock if it is called with the wrong interrupt

level even though the invariants have been moved from the comments to the code.

It is a common mistake to call functions that depend on a system parameter

that does not have the expected value. If there are many references to the system

parameter, aliasing errors can occur. Figure 6 shows such an example in C.

Two functions that depend on the system interrupt request (IRQ) level are called.

The IRQ numbers represent the current priority of the system IRQ level. A higher

number means a higher priority. The first function changes the IRQ but the program-

mer does not remember to test for it and calls the second function which required the

old, lower, IRQ value. This situation could lead to deadlock because an unexpectedly

high IRQ value might prevent interrupts and traps from being handled when they

should be. The f2 function may rely on interrupts that need an IRQ level of 3.

Figure 7 shows the same example, in Clay (not C) with the pre and post condi-

tions included in the code as invariants using singleton types and arithmetic com-

parisons. A value of type IrqLevel is passed to and from functions as evidence that
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@type IrqLevel[int N]; // @ means IrqLevel is linear

IrqLevel[N] set_irq [int N, int R] (IrqLevel[R] irq, Int[N] n);

IrqLevel[5] f1 [int N; 0<= N && N<=5](IrqLevel[N] irq);

IrqLevel[3] f2 (IrqLevel[3] irq);

IrqLevel[3] irq2 = set_irq(irq, 3); // Invalidates irq.

irq3 = f1(irq2); // Invalidates irq2.

f2(irq2); // Fails since irq2 is invalid

Figure 8: A set of function calls that depend on the linear interrupt request

level. The last function call will fail to type check because it takes an invalidated

IrqLevel.

IrqLevel[3] irq2 = set_irq(irq, 3);

IrqLevel[5] irq3 = f1(irq2);

IrqLevel[3] irq4 = set_irq(irq3);

IrqLevel[3] irq5 = f2(irq4); // Correct!

Figure 9: A set of function calls that depend on the linear interrupt request level.

The function headers are shown in Figure 8. This code uses the linear correctly

and succeeds.

the run-time IRQ level is equal to N whenever the function is called.

The set irq function takes a singleton integer of value N and returns an IrqLevel[N ].

The f1 function now takes an IrqLevel[intN ]. The arithmetic comparisons enforce

the invariant 0 ≤ N ≤ 5. The function returns an IrqLevel[5]. The f2 function

now takes an IrqLevel[3]. The type system will ensure that calls to f2 pass in an

IrqLevel[3]. When the code in Figure 7 is compiled, the type of irq is IrqLevel[3].

This irq is passed to f1 which calls set irq to change the system parameter to 5 and

returns an IrqLevel[5]. At this point an error is still made because irq no longer

represents the system parameter but is passed to f2. This error still sneaks by so

stronger measures are necessary.

The type system uses singleton types and arithmetic comparisons to enforce

invariants and uses linear types to avoid aliasing problems with the irq level. To

prevent passing around outdated values, variables of type IrqLevel will need to be

linear so they become invalid when they are used. Figure 8 shows the example with
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Figure 10: The Clay compiler

linear types added. Calls to set irq take a linear IrqLevel and invalidate it. They

return a new IrqLevel that accurately reflects the system parameter. Calls to f1 do

the same. Calls to f2 return the original IrqLevel to be re-used since it is unchanged.

Because irq2 is linear, the call to f1 invalidates it and the error seen in the previous

aliasing examples will be caught by the type checker that reports that f2 has been

handed an invalid IrqLevel. Figure 9 shows a corrected version of the function calls.

Making variables of type IrqLevel linear prevents aliasing errors such as passing an

outdated version of the irq to a function.

Singleton and linear types allow compile-time detection of aliasing errors and

invariant failures. Where missing run-time checks are necessary, invariants will fail

at compile-time alerting the programmer to the omission.

2.3 The Type-Safe Language Clay

Clay1 is a type-safe variant of C++ with an advanced type system. This language was

developed at Dartmouth College primarily by Chris Hawblitzel, Gary Morris, Eric

Krupski, and Ed Wei. The language currently supports singleton types, linear types,

polymorphism, and type inference. Clay is able to detect many errors including buffer

overflows, kernel stack overflows, NULL pointer uses, freed memory uses, and aliasing

errors at compile time. I have made small additions to the Clay compiler as needed.

These additions include bitwise operators (<<, >>, &, |, ...) and hexadecimal

numbers.

1C w/ LineAr tYpes, C w/ Linear ArithmetYc, CLassy AcronYm
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Currently many necessary safety checks in operating systems are done at run

time or not at all. Clay moves the burden of error checking from run time to compile

time thereby allowing the programmer to find errors while compiling and lessening

the number of errors the end user sees.

The Clay compiler consists of a lexer, parser, syntax checker, type checker, the

Omega constraint checker [23], and a compiler to C. Figure 10 shows a diagram of

the compilation steps. The type checker produces constraints, which are run through

the Omega constraint checker. After type checking is successful, the code compiles

to C. When a Clay file foo.clay is compiled (“clay foo.clay”), it produces a file named

foo.cc that contains the C++ translations of foo.clay and all the extern declarations

it needs.

2.3.1 Size 0 Types

The first aliasing example (Figure 6) attempted to use the interrupt request level

without passing an explicit value around. In solving the aliasing problem, an explicit

irq value of type IrqLevel had to be passed. The compiler guaranteed that the code

passed the irq value safely and only called irq functions when allowed as stated in the

invariants. The compiled code comes with this guarantee and does not need the irq

value any more since all the checks on it were done at compile time and the checks

were removed from the compiled code.

Most types take up space in memory and their values can have run-time affects.

The IrqLevel type doesn’t affect anything at run time and nothing else depends on

it at run time. It doesn’t need to take up any space in memory or even exist at run

time.

Clay types can be grouped by the amount of space they use in memory. An int in

C++ uses 32 bits of memory, a short uses 16 and a char uses 8. In Clay, these types

belong to higher groups called kinds, which reflect their linearity and the amount
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of memory they use. The type int has kind type32. This is the most common kind

and is abbreviated to type. The type IrqLevel can have the kind type0 meaning it

uses no space in memory. It is linear so the full kind would be @type0. By making

IrqLevel linear and size 0, the compiler can check all the constraints on the interrupt

request level and no longer need the IrqLevel at run-time.

Size 0 types allow invariants to be tracked throughout code without taking up

memory or slowing down the code at run time. The resulting compiled code is safe

(provably free of aliasing errors and provably matching the specification) and can be

just as fast as the original code.

2.3.2 Type Erasure

The type parameters and comparisons used during compile time are unimportant

during run-time when the compiled code has already been proven safe. After type

checking, the Clay compiler erases the type parameters and comparisons before pro-

ducing C++ code. When IrqLevel is linear and size 0, the irq functions from the

previous example change from this:

@type0 IrqLevel[int N];

IrqLevel[N] set_irq [int N, int R] (IrqLevel[R] irq, Int[N] n);

IrqLevel[5] f1 [int N; 0<= N && N<=5](IrqLevel[N] irq);

IrqLevel[3] f2 (IrqLevel[3] irq);

to this:

void set_irq (unsigned long n);

void f1 ();

void f2 ();

The resulting code has the safety guarantees from the compiler and is in C++,

a language commonly used for operating systems. This means that parts of an

operating system can be written in Clay and compiled to C++ and then compiled
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together with the rest of an operating system. Function calls are possible from Clay

to C++ and vice versa. Creating a safe operating system is a daunting task but with

Clay, important parts can be written safely and other parts can left in C or C++.

2.3.3 Clay Syntax

Clay syntax is similar to C. This section explains the differences needed to read the

code examples in the rest of the thesis.

Variable declarations

Variables must be initialized when they are declared. Unlike C, Clay has some type

inference and can guess the correct type from the initial value. The type can also be

stated explicitly. The following are declarations:

int x = 3;

let x = 3;

The first creates a signed 32 bit integer with value 3. The second asks Clay to infer

the type of x. Clay chooses Int[3], a 32 bit singleton integer.

Function headers

Unlike C, Clay function headers can include type parameters and comparisons be-

tween those parameters. The format of a standard Clay function is:

inline return_type name [type parameters; comparisons]

(parameters) limit;

As in C, the inline tag is optional. The return type can be any Clay type. Clay is

capable of returning more than one value at a time using the tuple type (φ[τ1, τ2, . . .]).

The φ in the type must be @ (linear) if any of the types in the tuple are linear. The

function name must begin with a lowercase letter. The type parameters used in

the function parameters must be declared in the square brackets along with any
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boolean comparisons between them. The swap function shown in Figure 2 shows

type parameters and comparisons:

void swap

[int M, type T, int J, int K; 0<=J && 0<=K && J<M && K<M]

(Array[M,T] array, Int[J] j, Int[K] k)

{ ... }

Types and type parameters (other than type int) must begin with an uppercase

letter. The type variables in the array get, array set, and swap functions don’t

need to have different names. As with parameter names, scope allows different

functions to use the same type parameter names. The names in swap are different

in these examples for purposes of simplicity.

The limit is optional and only appears when the function manipulates only size

0 types. If the whole function has no actual run-time effect, it and any calls to it

can be erased. The keyword for a limit is limited[N ] where N is a positive integer.

A limited function can only call functions with an equal or lower limit value. An

unlimited function acts as if its limit was infinity. This allows the compiler to erase

functions with no direct run-time effect.

Functions used in Clay but written in C++ have two syntax choices. The first:

native return_type function_name [type parameters; comparisons]

(parameters) limit;

uses the native tag and is just the function header. (native implies that the function

is written in a native non type-safe language such as C++.) If the function can be

erased, it is limited[N ] and there is no corresponding C++ function. For example,

a function which throws away the IrqLevel state-type value when it hits 0

native void pitch_irq(IrqLevel[0] irq) limited[0];

will be completely erased by the compiler.

The second syntax option for native functions is
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return_type function_name [type parameters; comparisons]

(parameters) limit = native { ...}

The C++ function header and body can be declared inside the native brackets.

Type parameters

Type parameters are declared with a kind. They can use the kinds for types as well

as int and some abbreviations that include some comparison information about the

int. A integer type parameter could be used as follows:

void foo [int N] (Int[N] n);

Each type parameter is declared with its kind. The comparisons between type pa-

rameters are phrased as a boolean expression where the possible boolean operators

are comparative (<, >, ≤, ≥, ==), additive (+,−), and logical (&&,||). The follow-

ing shows several boolean operators being used in the arithmetic comparison:

void foo [int N, int M; (N+3>M || M==10) && N>=0](Int[N] n, Int[M] m);

Clay uses some abbreviations for frequently used combinations of type parameters

and comparisons. For example, kind s32 means a signed 32-bit integer and u32

indicates an unsigned 32-bit integer. The compiler can handle differing sizes of kind

abbreviations. If a function takes a singleton integer whose value can be 0 to 3, the

kind of its type parameter can be declared as u2 to indicate it is unsigned and the

data occupies two bits:

void foo [u2 N] (Int[N] n);

This is the same as:

void foo [int N; 0<=N && N<4] (Int[N] n);

Type declarations

Types are declared in two ways:

type Int[int N] = native
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typedef TwiceInt[int N] = Int[N+N]

The first type is the singleton integer. It is declared to have kind type meaning it

is non-linear and takes up 32 bits of memory. The keyword native means the type

is defined in C by the Clay compiler. Because Int[N ] has kind type, it will become

an unsigned int when compiled so the programmer does not need to create a type

in C. The second type is built on top of an existing type and Clay can infer its kind

from the kind of Int[N ]. The kinds and some base types are built into clay. Using

a type declaration, a programmer can create new types.

Existential types

Clay uses existential type parameters when the kind of the type parameter is known

but its value is not. A function that gets external data (from a device or a user)

may not know the exact value it returns. Such a function might look like:

exists [u8 B] Int[B] query_user_for_a_char [u16 A] (Int[A] a);

This function takes a singleton integer in the range of 0 to 65535 (16 bits) and returns

some singleton integer in the range of 0 to 255 (8 bits). The type exists [u8 B] Int[B]

allows the exact value to be determined at run time.

Packing and unpacking types

When the query user for a char function is called, the returned value is existential

and will need to be unpacked [16] before it can be used as a singleton integer. This

is accomplished with square brackets after the let in its assignment statement:

let[] c = query_user_for_a_char(200);

Type int is defined as an abbreviation for exists [s32 I] Int[I] so an int can be

converted to a singleton integer by unpacking:

int x = 3; // x : exists [s32 I] Int[I]

let[] y = x; // y : Int[I] where I’s value isn’t known
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By unpacking, the type system can use the value as a singleton integer but it is not

able to recognize that the value is 3. Types can also be packed as other types to add

an existential:

let x = 3; // x : Int[3]

let y = pack [int] (x); // y : exists [s32 I] Int[I]

Again, the specific value 3 is lost when packing occurs.
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3 A Formal Abstract Machine with Concurrency

and Locks

The formalization of locks and concurrency begins with part of an abstract language

presented by Dartmouth’s language theory group in a technical report [12]. It pro-

vides the syntax and rules for an abstract machine which includes linear memory.

Operating systems are multi-threaded so I added concurrency to the abstract ma-

chine. I also added a formal lock system to allow safe threads to share data safely.

We had already proven the basic abstract machine to be sound in [12] so I re-proved

soundness on my abstract machine with concurrency and locks. Soundness means

that programs or expressions written in the abstract syntax can always evaluate

until they reach an approved end-state and types are proved during the evaluation.

This means that using my abstract machine, a multi-threaded expression that uses

locks cannot get stuck in a non-end state and cannot suddenly convert the locks into

some other type. Such an expression is forced to use the lock rules to acquire and

release the lock and may not access a locked resource without first acquiring it. My

abstract machine also prevents the release of a lock without holding a matching re-

source. This section presents the basic abstract machine and its proofs of soundness.

It then shows my addition of concurrency and locks and explains the new soundness

proofs.

3.1 The Basic Abstract Syntax

The syntax of the abstract machine is composed of linearity, environments, kinds,

types, expressions, and values.

linearity

φ = non | lin
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Linearity is represented by φ, which can be non (non-linear) or lin (linear).

arithmetic

i = · · · | − 2 | − 1 | 0 | 1 | 2 | · · ·

b = true | false

The types and expressions use some abbreviations. i represents the integers,

positive and negative. b represents the booleans.

kinds

K =
φ

i | int

Types are categorized into different kinds by their linearity and memory usage.

The syntax includes two kinds:
φ

i and int. The first kind is for types which take up

space in memory. The i is an integer denoting how many words of memory the types

of that kind use and the φ states if the kind is linear or non-linear. For example
non

1 ,
lin

1 , and
lin

0 correspond to Clay’s kinds type, @type, and @type0. The second kind,

int, is the kind of type parameters (e.g. in the singleton integer Int[N ], N has kind

int while the singleton integer has kind
non
1 ). As type parameters, kind ints don’t

take up space in memory. Therefore, kind int is not the same as C’s type int.

types

τ = τ1
φ

−→ τ2 | φ〈−→τ 〉 | I | ∀α : K.τ | ∃α : K.τ | Int(I) | Mem(I, τ) | bool

I = α | i

The types listed above are (in order) a function type which takes a type and

returns another type (the function can be linear meaning called only once), a tuple

of other types (the tuple can be linear), a type variable, an integer, a universal type,
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an existential type, a singleton integer type, a memory state type, a lock type, and

a boolean type. The singleton integer type and the memory state type are used

together to provide linearly accessed memory. The remaining types are necessary

for a sufficiently flexible abstract syntax.

expressions

e = i | b | x | e1 e2 | eτ | φ〈−→e 〉 | λx : τ
φ

−→ e

| Λα : K.v | let 〈−→x 〉 = e1 in e2 | if e1 then e2 else e3

| pack[τ1, e] as∃α : K.τ2 | unpack α, x = e1 in e2

| fix x : τ.v | load(eptr, eMem) | store(eptr, eMem, ev) | fact

The expressions are the legal statements in the abstract syntax. They include

(in order) integers, booleans, variables, application of one expression to another,

application of an expression to a type, a tuple of other expressions (the tuple can be

linear), a function abstraction which replaces a variable inside an expression, a type

abstraction which replaces a type inside an expression, a let expression, which assigns

a variable to one expression and substitutes that variable in another expression, an

if−then−else expression, an expression to pack an expression of one type as another

type, and expression to unpack a type in an expression, an expression for recursive

functions (fixed-point combinator [22]), load and store expressions for linear memory,

and a fact which is a value of memory state-type.

values

v = i | b | Λα : K.v | pack[τ1, v] as∃α : K.τ2 | λx : τ
φ

−→ e | φ〈−→v 〉 | fact

Some of the expressions are in an end-state, unable to progress to other expres-

sions. These are the values. Expressions such as load progress to other expressions
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and are therefore not in an end-state (load progresses to the loaded value).

environments

M = {1 7→ v1, · · · , n 7→ vn}

Ψ = {1 7→ τ1, · · · , n 7→ τn}

∆ = {α1 7→ K1, · · · , αn 7→ Kn}

Γ = {x1 7→ τ1 · · · , xn 7→ τn}

C = Ψ; ∆; Γ

The environments are the memory environment (M), the type environment (Ψ),

the kind environment (∆), and the the variable environment (Γ). M maps memory

locations to values. Ψ maps memory locations to types and shows the type of each

value in M . ∆ maps type variables to kinds and Γ maps variables to types. Some

of the variables in Γ may be linear. Ψ, ∆, and Γ are usually used together and

are collectively called C, the context. These environments allow the rules of this

abstract machine to keep track of the values, types, and kinds used in an expression.

For shorthand purposes,

•
non

C is the context C without any linear types.

• C∅ = ∅; ∅; ∅, the empty context.

• C1, C2 is the union of C1 and C2.

3.2 The Basic Abstract Rules

The abstract rules relate kinds to types, types to expressions, and allow expressions

to progress to other expressions until an end-state is reached.
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kinding rules

(K IV AR) ∆ ` i : int

(K BOOL) ∆ ` bool :
non

1

(K TV AR) ∆, α : K ` α : K

(K ALL)
∆, α : K ` τ :

φ

i

∆ ` ∀α : K.τ :
φ

i

(K SOME)
∆, α : K ` τ :

φ

i

∆ ` ∃α : K.τ :
φ

i

(K ABS)
∆ ` τ1 :

φ1

i1 ∆ ` τ2 :
φ2

i2

∆ ` τ1
φ

−→ τ2 :
φ

1

(K NLTUPLE)
∀j.(∆ ` τj :

non

ij )

∆ ` non〈−→τ 〉 :
non

i
where (i =

∑

j

ij)

(K LTUPLE)
∀j.(∆ ` τj :

φj

ij)

∆ `lin 〈−→τ 〉 :
lin

i

where (i =
∑

j

ij)

(K INT )
∆ ` I : int

∆ ` Int(I) :
non

1

(K MEM)
∆ ` I : int ∆ ` τ :

non

1

∆ ` Mem(I, τ) :
lin
0

The kinding or type well-formedness rules show the kind for each type. Rules in

the form of a fraction state that the top part implies the bottom part. Statements in

the form A : B : C means that value A has type B and kind C. Part of this syntax

is seen in the kinding rules to pair a type with a kind.

For example, as seen in the rule (K INT ), when type I has kind int given the

mapping of variables to types, that mapping also holds for type Int(I), a singleton
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integer, which has kind non-linear size 1. This kind means the singleton integer takes

up the space for an integer in memory. Rule (K MEM) shows that when type I

has kind int and type τ has kind non-linear size 1 given the mapping of variables

to types, type Mem(I, τ) has kind linear size 0 using the same mapping. This kind

uses no space in memory.

These two rules show the kinds for singleton integer types and memory state

types. The singleton integer types are used to point to memory locations and need

to take 1 word of memory. The memory state-types are used to track the type

currently residing at a memory location and control linear access to it.

typing rules

(T M)

Ψ = Ψspare, Ψe Ψe; ∆; Γ ` e : τ

∀i ∈ dom(Ψ).(C∅ ` M(i) : Ψ(i)))

Ψ; ∆; Γ ` (M, e : τ)

(T V AR)
non

C , x : τ ` x : τ

(T BOOL)
non

C ` b : bool

(T FACT )
non

C , I 7→ τ ` fact : Mem(I, τ)

(T INT )
non

C ` i : Int(i)

(T LOAD)
C1 ` eptr : Int(I) C2 ` eMem : Mem(I, τ)

C1, C2 ` load(eptr, eMem) :lin 〈τ, Mem(I, τ)〉

(T STORE)

C2 ` eMem : Mem(I, τ1) C3 ` ev : τ2

C1 ` eptr : Int(I) C1, C2, C3 ` τ2 :
non

1

C1, C2, C3 ` store(eptr, eMem, ev) : Mem(I, τ2)

(T TABS)
C, α : K ` v : τ

C ` Λα : K.v : ∀α : K.τ

(T TAPP )
C ` e : ∀α : K.τ1 C ` τ2 : K

C ` eτ2 : [α 7→ τ2]τ1
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(T TUPLE)

C =
non

C , C1, · · · , Cn

∀i.(Ci ` ei : τi) C ` φ〈−→τ 〉 : K

C ` φ〈−→e 〉 : φ〈−→τ 〉

(T ABS)
∆ ` τ1 : K

φ

Ψ; ∆;
φ

Γ, x : τ1 ` e : τ2

φ

Ψ; ∆;
φ

Γ` λx : τ1
φ

−→ e : τ1
φ

−→ τ2

(T APP )

C1, C2 = Ψ; Θ; ∆; Γ

C1 ` e1 : τa
φ

−→ τb C2 ` e2 : τa

C1, C2 ` e1e2 : τb

(T LET )
Ca ` ea : 〈−→τ 〉 Cb,

−−→x : τ ` eb : τb

Ca, Cb ` let〈−→x 〉 = ea in eb : τb

(T FIX)
C ` τ :

φ

i C, x : τ ` v : τ

C ` (fix x : τ.v) : τ

(T PACK)

C ` τ1 : K C ` ∃α : K.τ2 :
φ

i

C ` e : [α 7→ τ1]τ2

C ` pack[τ1, e] as∃α : K.τ2 : ∃α : K.τ2

(T UNPACK)

C1 ` e1 : ∃α : K.τ1

C2, α : K, x : τ1 ` e2 : τ2

C1, C2 ` unpack α, x = e1 in e2 : τ2

(T IF )
Ca ` e1 : bool Cb ` e2 : τ Cb ` e3 : τ

Ca, Cb ` if e1 then e2 else e3 : τ

The typing rules show the type for each expression. As mentioned above, another

part of A : B : C is seen here to indicate that a value has a particular type (A :

B). The first typing rule (T M) states that given environments for an expression

e of type τ (Ψe; ∆; Γ) and the rest of the environments for M (Ψspare), if for every

memory location i in M , the mapping M(i) has type Ψ(i), then the expression e is

correctly typed in the full environment. (As a note: TABS is an abbreviation for

type abstraction and TAPP is an abbreviation for type application.)
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The typing rules for integers, facts, load, and store form the next piece of the

linear memory puzzle. The expression i has type Int(i) in a context stripped of

linear values. Typing rule (T FACT ) states that when the context is separated into

linear and non-linear sections, where memory location I maps to τ in the linear type

environment the expression fact has type Mem(I, τ).
non

C is the context C will all

the linear values removed.

The rules for load and store are slightly more complex. The (T LOAD) rules

says that when the pointer has type Int(I) in one environment and the matching

Mem has type Mem(I, τ) in another environment, the load expression has type

lin 〈τ, Mem(I, τ)〉 in a combined environment. This means the expression eventually

evaluates to (returns) a tuple type of the stored value type and the Mem. The Mem

has to be returned because it is linear and future loads and stores will need the

Mem. The combined environment has the mappings of both separate environments.

Environment combining is defined to make contradictory mappings (two mappings of

the same integer to different types or values) impossible. The rule for store is similar

to load and has three environments to combine. The type of a store expression is

Mem(I, τ). This means store takes a pointer, a Mem, and a value to store and

eventually evaluates to type Mem(I, τ2) where value : τ2. These rules ensure that

the given Mem matches the pointer to the linear memory and that memory cannot

be accessed without its Mem.

evaluation rules

The evaluation rules determine how an expression progresses to a new expression.

The memory environment, M , has been omitted from rules that do not affect it.

(E LOAD) (R, M, load(i, fact)) → (RM, lin 〈M(i), fact〉)

(E STORE) (R, M, store(i, fact, v)) → (R, [i 7→ v]M, fact)
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(E ABSAPP ) (λx : τ
φ

−→ e1)v2 → [x 7→ v2]e1

(E TABSTAPP ) (Λα : K.v)τ → [α 7→ τ ]v

(E LET ) let 〈x1, · · · , xn〉 = φ〈v1, · · · , vn〉 in e → [x1 7→ v1, · · · , xn 7→ vn]e

(E IF1) if true then e1 else e2 → e1

(E IF2) if false then e1 else e2 → e2

(E UNPACK) unpack α, x = (pack[τ1, v1] as τ2)in e2 → [α 7→ τ1, x 7→ v1]e2

(E FIX) fix x : τ.v → [x 7→ fix x : τ.v]v

e → e′

(M, e) → (M, e′)

The evaluation rules apply to expressions when the sub-expressions inside them

have become values. The (E LOAD) rule takes a singleton integer pointer to mem-

ory and a fact and evaluates to a linear tuple of the value in memory and the fact.

The typing rules (T LOAD), (T INT ), and (T FACT ) ensure that the singleton

integer matches the fact and the expression evaluates to a value of the type men-

tioned in the fact and an identical fact. The kinding rules (K INT ) and (K MEM)

ensure that the singleton integer is still usable and the the previous fact became

unusable and was replaced by the new fact.

The (E STORE) rule functions similarly to the (E LOAD) rule but changes the

mapping of memory location i from its old value to the new value. The expression

evaluates to a new fact whose type contains the type of the newly stored value. The

final evaluation rules states that if an expression evaluates to a new expression, its

environment evaluates with it. This rule is used for those evaluation rules which do

not affect M .

Since load and store are the only expressions which access the memory environ-
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ment mapping, all memory accesses are linear and use Mems. (Note: ABSAPP is an

abbreviation for an expression abstraction applied to an expression and TABSTAPP

is an abbreviation for a type abstraction applied to a type).

congruence evaluation rules

E[e] = eτ | pack[τ1, e] as∃α : K.τ2 | unpack α, x = e in e2

| ee2 | v1e | φ〈ei, · · · , ek−1, e, ek+1, · · · , en〉 | let 〈−→x 〉 = e in e2

| if e then e2 else e3 | load(e, eMem) | load(vptr, e)

| store(e, eMem, ev) | store(vptr, e, ev) | store(vptr, vMem, e)

(congruence rule)
(M, e) → (M ′, e′)

(M, E[e]) → (M ′, E[e′])

The congruence rules determine the order in which parts of an expression can

evaluate. E[e] is an expression containing a sub-expression e. The rule states that

the e part of the expression must evaluate first if it is not already a value. By

writing the congruence rules in this format, they don’t have to each be written out

separately. The congruence rule states that if a sub-expression and its environment

evaluate to a new sub-expression and environment, the outer expression evaluates

as well. This allows the parts of an expression to progress until they are all values,

at which point the whole expression evaluates. The congruence rule for tuples has

been changed to make tuple evaluation order non-deterministic

erasure rules

The Erasure rules apply after type checking is complete and strip out the extraneous

types from each expression. Expressions of kind size 0 such as e : Mem(I, τ) have no

direct run-time affect and take up no space assuming that they do not contain infinite

loops. While infinite loops are not generally desirable, they can be considered safe
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for the purposes of this research if they do not violate memory. After an expression

e is erased, it is referred to by d.

(ER Me) erase((M, e)) = ( erase(M), erase(e))

(ER M) erase(M) = {1 7→ erase(v1), · · · , n 7→ erase(vn)}

(ER i) erase(i) = i

(ER b) erase(b) = b

(ER x) erase(x) = x

(ER APP ) erase(e1 e2) = erase(e1) erase(e2)

(ER APPT ) erase(e τ) = erase(e)

(ER TUPLE) erase(φ〈e1, . . . , en〉) = 〈 erase(e1), . . . , erase(en)〉

(ER FUN) λx : τ
φ

−→ e = λx −→ erase(e)

(ER TFUN) erase(Λα : K.v) = erase(v)

(ER LET ) erase(let 〈−→x 〉 = e1 in e2) = let 〈−→x 〉 = erase(e1) in erase(e2)

(ER IF ) erase(if e1 then e2 else e3) = if erase(e1) then erase(e2) else erase(e3)

(ER PACK) erase(pack[τ1, e] as∃α : K.τ2) = erase(e)

(ER UNPACK) erase(unpack α, x = e1 in e2) = let x = erase(e1) in erase(e2)

(ER FIX) erase(fix x : t :
φ

i .v) = fix x. erase(v) where i > 0

(ER FIX0) erase(fix x : t :
φ

0 .v) = 〈〉

(ER FACT ) erase(fact) = 〈〉
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(ER LOAD) erase(load(eptr, eMem)) = load( erase(eptr), erase(eMem))

(ER STORE) erase(store(eptr, eMem, ev)) = store( erase(eptr), erase(eMem), erase(ev))

Size 0 sub-expressions erase to 〈〉 when they become values. An erased program (a

big expression) will have the same intended run-time behavior as the typed program.

This allows a compiler (such as for Clay) to safely compile to an unsafe language

(such as C) after type checking is complete.

untyped expressions

d = i | b | x | d1 d2 | 〈
−→
d 〉 | λx −→ d | let 〈−→x 〉 = d1 in d2

| if d1 then d2 else d3 | fix x.u | load(dptr, dMem) | store(dptr, dMem, dv)

untyped values

u = i | b | λx −→ d | 〈−→u 〉

After type erasure, the remaining expressions and values use space in memory or

have an actual run-time affect. The load and store expressions will only be legal here

if the original typed expressions were legal so linear memory is still enforced. The

symbol for expressions has changed from e to d and from v to u, a step backwards

indicating that the types have been removed.

untyped evaluation rules

(D LOAD) (L, load(i, 〈〉)) → (L, 〈L(i), 〈〉〉)

(D STORE) (L, store(i, 〈〉, u)) → ([i 7→ u]L, 〈〉)

(D ABSAPP ) (λx −→ d1)u2 → [x 7→ u2]d1

(D FIX) fix x.u → [x 7→ fix x.u]u
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Several evaluation rules cannot apply to the untyped expressions. The above

untyped evaluation rules work where the previous rules have the wrong number of

arguments. The other untyped evaluation rules have the same format as the original

evaluation rules and simply require a name change from (E RULE) to (D RULE)

so they have been omitted.

untyped environments

L = {1 7→ u1, · · · , n 7→ un}

The environments handling types do not exist after type erasure. This leaves the

memory environment which maps memory locations to values. This environment

now handles untyped expressions and values and following the re-naming trend, its

name is changed from M to L.

A simple typed expression in this abstract syntax might look like:

(M, load(500,store(500, fact, 3)))

This expression stores the value 3 into memory location 500 and then loads it. It

progresses as follows (with types shown for clarity):

(M, load(500,store(500:Int[500], fact:Mem[500,I], 3:Int[3])))

([500->3]M, load(500:Int[500], fact:Mem[500,3])) By (E_STORE)

([500->3]M, lin<3,fact>:<Int[3],Mem[500,3]>) By (E_LOAD)

The same expression would appear as follows after type erasure:

(L, load(500,store(500,<>,3))

and would progress as follows:

(L, load(500,store(500,<>,3))

([500->3]L, load(500,<>)) By (D_STORE)

([500->3]L, <3,<>>) By (D_LOAD)

In an operating system stack memory can be viewed as a linear array of words.

The abstract machine allows safe access to a linear memory stack. The typing and
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indicates a step

(M,e:t) (M’,e’:t) ... (M’’,v:t)

Figure 11: Preservation: Types are preserved as an expressions steps.

(M,e:t) (M’,e’:t) (M,e:t) = (M’’,v:t)or

Figure 12: Progress: Non-values will step.

kinding rules enforce the linearity. Hawblitzel et al. [12] use Mem to build lists,

arrays, and regions of nonlinear data that must be accessed linearly.

3.3 Soundness Proofs

[14] presents the soundness proofs for the basic abstract machine. Soundness means

that well-typed programs will never get stuck and will follow the same specification

as the program progresses. A soundness proof consists of a proof of type preservation

and a proof of progress. Progress says that an expression which obeys the language

specification will make progress until it becomes a value. Preservation says that the

new expressions created when the initial expression progresses to a value also obey

the specification. The report also shows a proof of erasure that shows that the size

0 types can be erased without changing the run-time behavior.

Formally stated, the theorems are as follows:

Preservation: If Ψe; ∆; Γ ` e : τ , Ψspare, Ψe; ∆; Γ ` (M, e : τ) and (M, e) →

(M ′, e′), then Ψ′
e; ∆; Γ ` e′ : τ and Ψspare, Ψ

′
e;

∆; Γ ` (M ′, e′ : τ). If (M, e) is well-typed and (M, e) progresses in one step to some

(M ′, e′) then e′ has the same type as e. This means that the type of an expression is

preserved when its subexpressions progress. Figure 11 shows a visual representation

of type preservation.
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(M,e:t) (M’,e’:t)

(L,d)(L,d) (L’,d’)

(M,e:t) (M’,e’:t)

or

indicates erasure

Figure 13: Erasure1: If an expression steps to another expression, there is a

distance of zero or one steps between their erasures.

(M,e:t) = (M,v:t)

(L,u)

or

(M,e:t) (M’,v:t)

(L,u)

+

+ indicates one or more steps

Figure 14: Erasure2: If the erased expression is a value, then the typed expression

evaluates in zero or more steps to a value which erased to the original erased

expression.

Progress: If (M, e) is closed and well-typed (CMe ` (M, e : τ) for some τ and

CMe = ΨMe; ∅; ∅), then either e is a value or else there is some (M ′, e′) so that

(M, e) → (M ′, e′). This proof shows that well-typed expressions cannot get stuck

until they become values. Figure 12 shows a graphic example of progress.

Progress definitions

(L,d) (L’,d’)

(M,e:t) (M’,e’:t)
+

Figure 15: Erasure3: Each step taken by an untyped expression is equivalent

to one or more steps taken by its typed expression. The extra steps handle only

types.
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• (M1, e1)
?
7→ (M2, e2) means (M1, e1) progresses in zero or one steps to (, M2, e2).

• (M1, e1)
∗
7→ (M2, e2) means (M1, e1) progresses in zero or more steps to (R2, M2, e2).

• (M1, e1)
+
7→ (M2, e2) means (M1, e1) progresses in one or more steps to (M2, e2).

• (M1, e1)
?,(evaluation−rule)

7→ (M2, e2) means (M1, e1) progresses to (M2, e2) by ap-

plying the given evaluation rule zero or one times.

• (M1, e1)
∗,(evaluation−rule)

7→ (M2, e2) and (M1, e1)
+,(evaluation−rule)

7→ (M2, e2) are de-

fined in the same way as the above definition.

Erasure: If (M, e) is closed and well-typed (CMe ` (M, e : τ) for some τ and

CMe = ΨMe; ∅; ∅), then the following holds:

1. If (M, e) → (M ′, e′) then erase((M, e))
?
→ erase((M ′, e′)). If (M, e) evaluates

in one step to (M ′, e′), then erase((M, e)) evaluates in zero or one steps to

erase((M ′, e′)). This proof shows that the intended run-time affect is not lost

during erasure. The erased expression will follow a parallel progression to that

of the typed expression. Figure 13 shows a graphic example of this erasure

sub-theorem.

2. If erase(e) is a value then (M, e)
∗
→ (M ′, v), erase((M, e)) = erase((M ′, v)). If

the erasure of e is a value then (M, e) evaluates in zero or more steps to some

(M ′, v′) where the erasure of (M, e) equals the erasure of (M ′, v′). This proof

states that only extraneous types are erased from the values. The steps that

took (M, e) to (M ′, v) must have handled only extraneous types. Figure 14

shows a graphic example of this erasure sub-theorem.

3. If erase((M, e)) → (L′, d′) then (M, e)
+
→ (M ′, e′), erase((M ′, e′)) = (L′, d′). If

erase((M, e)) evaluates in one step to (L′, d′) then (M, e) evaluates in one or

more steps to (M ′, e′), and erase((M ′, e′))= (L′, d′). This proof states that a

step taken by an erased (M, e) is equivalent to one or more steps taken by the
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unerased (M, e). One of the steps had an actual run-time affect. The others

handled only extraneous types. Figure 15 shows a graphic example of this

erasure sub-theorem.

3.4 Adding Concurrency to the Abstract Machine

The basic abstract machine does not contain any notion of multiple processes or

threads. A single thread is basically a big expression. A tuple of expressions can

simulate a machine running several threads.

〈thread1, thread2, thread3〉

In the basic abstract machine these threads would evaluate one at a time and not

interact because there is no means of passing data between them.

A simple non-deterministic process manager is implemented in the congruence

rule for tuples. This rule allows any non-value sub-expression in a tuple to evaluate

next so the overall evaluation order is non-deterministic. The congruence rule for

tuples is non-deterministic and evaluation of the tuple causes some thread to take

a step so all threads will eventually progress by taking interleaved steps in a non-

deterministic fashion. This allows formal concurrency in my abstract syntax.

The following shows a simple example of several threads using the concurrent

abstract syntax:

〈store(500, fact, 3), store(504, fact, 4), store(508, fact, 5)〉

Each thread stores an integer into a memory location. A valid progression of steps
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for this multi-thread program could be

〈store(500, fact, 3), store(504, fact, 4), store(508, fact, 5)〉

〈fact, store(504, fact, 4), store(508, fact, 5)〉

〈fact, store(504, fact, 4), fact〉

〈fact, fact, fact〉

or any other combination of three threads which each take one step.

A series of let expressions can force deterministic behavior in a tuple when needed.

let x = e1 in let y = e2 in let z = e3 in 〈x, y, z〉

This let expression forces the sub-expressions in the tuple to evaluate in order. There-

fore, the change which allows non-deterministic evaluation order does not prohibit

any previous functionality.

3.5 Adding Locks to the Abstract Machine

In a typical operating system, access to data structures and devices may be shared by

several threads. The abstract machine with concurrency does not have a way to share

data safely. I added syntax and rules to my abstract machine to implement shared

data. This section discusses some basic locking issues and shows abstract machine

additions which will prevent locking errors that cause memory safety violations.

State types can control access to data structures and devices in operating system.

To share this access, a state type can be locked to allow only one thread to access

the device or data at a time. Untyped locks are vulnerable to many safety violations.

A safely typed lock needs to take these vulnerabilities into account.

In general, a lock is associated with a bit of memory. When the bit value is 0,

the lock is free and any thread may claim it, changing the value to 1. When the bit
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acquire(lock); acquire(lock); acquire(lock);

// critical section // critical section // critical section

release(lock); release(lock); release(lock);

Figure 16: Correct access to the same critical section by 3 threads.

acquire(lock); acquire(lock2);

// critical section // critical section // critical section

release(lock); release(lock2);

Figure 17: Three attempts to access the critical section by acquiring its lock. The

first code section is correct while the second and third code sections incorrectly

acquire the lock.

value is 1, the lock is already held by a thread and the other threads must try again

later or wait. If the lock is implemented so that those wanting the lock wait until it

is free, the lock is called “blocking”. When the thread holding the lock releases it,

the bit value is reset to 0.

Typically each lock is associated with a critical section or set of critical sections.

In Figure 16, three threads acquire a lock, access the critical section, and release

the lock. If the threads are all running concurrently then the order in which they

acquire the lock is non-deterministic.

3.5.1 Problems with Locks

Forget to acquire

Standardly, locks in C (the Posix libraries) do not enforce the matching of a particular

lock with a critical section. They also do not force the thread to acquire any lock at

all when accessing the critical section. This allows the following to occur.

The first code section in Figure 17 correctly acquires the lock for the critical

section. The second code section forgets to acquire any lock and doesn’t prevent

simultaneous access by the first code section. This could cause inconsistent data.

For example, if both critical sections read some shared memory and then write to it,

the second section to read might see the original value or the value just set by the
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acquire(lock); acquire(lock); acquire(lock);

// critical section // critical section // critical section

release(lock); release(lock2);

Figure 18: Three attempts to release the critical section’s lock. The first code

section is correct while the second and third code sections incorrectly release the

lock.

acquire(lock);

acquire(lock);

Figure 19: A re-entrant lock.

first section. The third code section acquires the wrong lock and not only doesn’t

prevent simultaneous access by the first code section but it ties up the lock2 for no

reason.

Forget to release

The first code section in Figure 18 correctly acquires the lock for the critical section.

The second code section forgets to release the lock and could cause deadlock if any

further code sections attempt to acquire the lock. The third code section forgets to

release lock1 and releases lock2 instead. Forgetting lock1 could cause deadlock as in

the second code section. If some other code section was still holding lock2, then this

could cause inconsistent data when another code section acquires lock2.

Re-entrant locks

A re-entrant lock as seen in Figure 19, occurs when a thread tries to acquire a lock

it already holds. The thread running this code section will wait forever because

it cannot acquire the lock until it releases it. This can cause deadlock if the lock

system is unprepared for such errors. This type of error can easily occur in large

code sections where the programmer forgets the lock is still held.
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acquire(lock);

release(lock);

release(lock);

Figure 20: Releasing an unheld lock.

Release unheld locks

If a thread releases a lock it does not hold, as seen in Figure 20, it could cause some

other thread to lose its hold on the lock causing inconsistent data.

The above-mentioned locking errors can cause data inconsistencies and deadlock

in code vital to the running of an operating system. Deadlock is technically safe as

long as memory is not violated but data inconsistencies are a patent safety violation.

A multi-threaded safe operating system kernel would therefore need support for safe

locks.

3.5.2 Safer Locks

In order to add support for locks, the following types, expressions, values, and envi-

ronments were added to the abstract machine:

types

τ+ = Lock(I, τ2)

The type Lock(I, τ) means that a lock exists for a value of type τ and the lock bit

is located at memory location I.

values

v+ = lock

The value lock is the lock itself and has type Lock(I, τ).
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expressions

e+ = create lock(eptr, eMem, eresource) | acquire(eLock, eptr)

| release(eLock, eptr, eresource) | lock

The create lock, acquire, and release expressions allow for creation, acquiring,

and release of a lock.

environments

R = {1 7→ 〈−→v1〉, · · · , n 7→ 〈−→vn〉}

Θ = {1 7→ 〈−→τ1 〉, · · · , n 7→ 〈−→τn〉}

The new resource environment, R, and its type Θ track the lock controlled re-

sources and their linear lock bit pointers. R contains the set of lock bit Mem values

and the currently free resources. Θ contains the lock bit Mem type and the resource

type even when the lock is held and resource is not in the R environment.

The evaluation, type well-formedness, type checking, and erasure rules needed to

enforce the lock abstractions are as follows:

evaluation rules

(E CREATELOCK) (R, M, create lock(i, fact, vresource))

→ ([i 7→ 〈fact, vresource〉]R, M, lock)

(E ACQUIRE1) (R, M, acquire(lock, i))

→ ([i 7→ 〈fact〉]R, [i 7→ 1]M, vresource)

where R(i) = 〈fact, vresource〉 and M(i) = 0

(E ACQUIRE2) (R, M, acquire(lock, i)) → (R, M, acquire(lock, i))

where R(i) = 〈fact〉 and M(i) = 1
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(E RELEASE1) (R, M, release(lock, i, vresource))

→ ([i 7→ 〈fact, vresource〉]R, [i 7→ 0]M, 〈〉)

where R(i) = 〈fact〉 and M(i) = 1

(E RELEASE2) (R, M, release(lock, i, vresource))

→ ((R, M, release(lock, i, vresource)))

where R(i) = 〈fact, vresource〉 and M(i) = 0

The congruence rules that would let each of these expressions progress one non-

value parameter at a time are of the same format at those mentioned above and

allow the parameters to evaluate from left to right until all parameters are values.

The create lock expression evaluates to a lock when its parameters are a pointer

describing the location of the lock bit (I), the fact for the lock bit, and the resource

state-type value to be locked. The fact for the lock bit is not returned so that only

the lock can change the value of this bit. The fact and the resource are both stored

in the R environment under R(I) = 〈fact, vresource〉 and their types are stored in the

Θ environment under Θ(I) = 〈Mem(I, τ), τ〉.

The acquire expression evaluates to itself when its parameters are values but

M(I) = 1 meaning the lock is already held. Thus, the expression blocks until the lock

is freed. When M(I) = 0 and the parameters are the lock and the pointer to its lock

bit, the expression evaluates to the resource state-type value. The resource state-type

value, being linear, is removed from the R environment though its type is still stored

in the Θ environment. The value of the lock bit changes to 1 indicating the lock is

now held so M(I) = 1, R(I) = 〈fact〉, Ψ(I) = Int(1), and Θ(I) = 〈Mem(I, τ), τ〉.

The release expression evaluates to itself when its parameters are values but

M(I) = 0 meaning the lock was already free. When M(I) = 1 and the parameters

are a lock, a pointer to the lock bit (I), and the locked resource state-type value,

the resource is once again stored in the R environment and the lock bit value is

42



changed to 0 indicating that the lock is free so M(I) = 0, R(I) = 〈fact, vresource〉,

Ψ(I) = Int(0), and Θ(I) = 〈Mem(I, τ), τ〉. A discussion of why the “releasing a free

lock” expression blocks is shown in Section 3.5.5.

kinding rules

(K LOCK)
∆ ` I : int ∆ ` τ :

lin

0

∆ ` Lock(I, τ) :
non

0

The kinding rule (K LOCK) specifies that type Lock is non-linear and takes no

space in memory. The Lock depends on a singleton integer type which is non-linear

and some type which is linear size 0. The singleton integer type refers to the memory

location of the lock bit and the other type refers to the linear size 0 resource to be

locked. The non-linearity allows the values of type Lock to be duplicated and passed

around in operating system code so that any thread which might need to acquire the

lock has a copy of it.

valid lock states

(T FREE) Int(0); 〈τMem, τresource〉 ` 〈τMem, τresource〉

(T HELD) Int(1); 〈τMem, τresource〉 ` 〈τMem〉

The two valid lock states are held and free. When a lock is free, the Ψ environment

maps its lock pointer to Int(0) and the Θ environment maps its lock pointer to

〈τMem, τresource〉. In this case, the resource is stored in the Θ environment. When a

lock is held, the Ψ environment maps its lock pointer to Int(1) and the Θ environment

maps its lock pointer to 〈τMem〉. Here, the resource is being used and thus not stored

in the Θ environment.

43



typing rules

(T RMe)

Ψ = Ψspare, Ψe, ΨR1, · · · , ΨRn Ψe; Θ; ∆; Γ ` e : τ

∀i ∈ dom(Ψ).(∅; Θ; ∅; ∅ ` M(i) : Ψ(i))

∀i ∈ dom(Θ).(ΨRi; Θ; ∅; ∅ ` R(i) : τi and Ψ(i); Θ(i) ` τi)

Ψ; Θ; ∆; Γ ` (R, M, e : τ)

(T LOCK) ∅; Θ, I 7→ 〈Mem(I, Int(J)), τ2〉; ∆;
non

Γ ` lock : Lock(I, τ2)

(T CREATELOCK)

C1 ` eptr : Int(I) C2 ` eMem : Mem(I, Int(0))

C3 ` eresource : τ :
lin

0

C1, C2, C3 ` create lock(eptr, eMem, eresource) : Lock(I, τ)

(T ACQUIRE)
C ` eLock : Lock(I, τ) eptr : Int(I)

C ` acquire(eLock, eptr) : τ

(T RELEASE)
C1 ` eLock : Lock(I, τ) eptr : Int(I) C2 ` eresource : τ

C1, C2 ` release(eLock, eptr, eresource) :non 〈〉

(T LOCK) specifies that the lock type matches the contents of the Θ environ-

ment. Additionally, the value of the lock bit must be 0 meaning the lock starts out

unheld. (T CREATELOCK) ensures that the pointer to the lock bit matches the

fact for the lock bit. It also ensures that the returned lock matches the resource

type and the lock bit location. (T RELEASE) ensures that the lock matches the

pointer and the resource.

erasure rules

(ER RMe) erase((R, M, e)) = ( erase(M), erase(e))

(ER LOCK) erase(lock) = 〈〉

(ER CREATELOCK) erase(create lock(eptr, eMem, eresource))

= create lock( erase(eptr), erase(eMem), erase(eresource))

(ER ACQUIRE) erase(acquire(eLock, eptr)) = acquire( erase(eLock), erase(eptr))
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(ER RELEASE) erase(release(eLock, eptr, eresource))

= release( erase(eLock), erase(eptr), erase(eresource))

The erasure rules remove the lock and the resource state-type value but keep

the pointer to the lock bit. Expressions that were legal under the evaluation, type

well-formedness and type checking rules will still have the same safety properties

after erasure. Therefore the untyped locks will still be handled safely.

untyped evaluation rules

(D CREATELOCK) (L, create lock(i, 〈〉, 〈〉)) → (L, 〈〉) where L(i) = 0

(D ACQUIRE1) (L, acquire(〈〉, i)) → ([i 7→ 1]L, 〈〉) where L(i) = 0

(D ACQUIRE2) (L, acquire(〈〉, i)) → (L, acquire(〈〉, i)) where L(i) = 1

(D RELEASE1) (L, release(〈〉, i, 〈〉)) → ([i 7→ 0]L, 〈〉) where L(i) = 1

(D RELEASE2) (L, release(〈〉, i, 〈〉)) → (L, release(〈〉, i, 〈〉)) where L(i) = 0

Untyped evaluation rules are necessary for each of the create lock, acquire, and

release evaluation rules because the Mem, the Lock, and the size 0 resource have

been erased to 〈〉 to create the untyped expressions.

3.5.3 Example of Locks in the Abstract Machine

The following example of locks in the abstract machine creates a lock for a fact

which guards memory location 500. The lock is acquired so 50 can be stored in the
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guarded location and then the lock is released:

(λx :lin 〈Mem(500, τlock), Mem(504, τresource)〉
non
−→

let 〈xlock, xresource〉 = x in

let y = create lock(500, xlock, xresource) in

release(y, 500, store(504, acquire(y, 500), 50)))

(lin 〈fact, fact〉)
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This example evaluates using the rules in the abstract machine.

(R, [500 7→ 0]M, (λx :lin 〈Mem(500, τlock), Mem(504, τresource)〉
non
−→

let 〈xlock, xresource〉 = x in

let y = create lock(500, xlock, xresource) in

release(y, 500, store(504, acquire(y, 500), 50))))

(lin 〈fact, fact〉))

(E ABSAPP )
→

(R, [500 7→ 0]M, let 〈xlock, xresource〉 =lin 〈fact, fact〉 in

let y = create lock(500, xlock, xresource) in

release(y, 500, store(504, acquire(y, 500), 50)))

(E LET )
→

(R, [500 7→ 0]M, let y = create lock(500, fact, fact) in

release(y, 500, store(504, acquire(y, 500), 50)))

(E CREATELOCK)
→ )

([500 7→ 〈fact, fact〉]R, [500 7→ 0]M, let y = lock in

release(y, 500, store(504, acquire(y, 500), 50)))

(E LET )
→

([500 7→ 〈fact, fact〉]R, [500 7→ 0]M,

release(lock, 500, store(504, acquire(lock, 500), 50)))

(E ACQUIRE1)
→

([500 7→ 〈fact〉]R, [500 7→ 1]M, release(lock, 500, store(504, fact, 50)))

(E STORE)
→

([500 7→ 〈fact〉]R, [500 7→ 1, 504 7→ 50]M, release(lock, 500, fact))

(E RELEASE1)
→

([500 7→ 〈fact, fact〉]R, [500 7→ 0, 504 7→ 50]M, 〈〉)

The first step evaluates the function abstraction and sets x equal to the pair of
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facts. The second step separates x into its component facts. This step evaluates

the top level let expression and substitutes facts for xlock and xresource. The third

step evaluates the create lock subexpression to a lock. The fourth step evaluates the

remaining let expression and substitutes the lock into the remaining inner expression.

The fifth step evaluates the acquire expression to the resource, a fact. The sixth

step evaluates the store expression using that fact and stores the value 50 into the

guarded memory location. This step returns the fact which is released back into R

on the seventh step. As the lock is acquired and released, the M and R environments

are updated. This example showed the safe usage of a lock in the abstract machine.

3.5.4 Prevented Lock Problems

The additional abstract syntax and rules prevent many of the aforementioned lock

problems.

When access to the actual resource requires the vresource, the lock must be acquired

before the resource can be accessed. This access must be controlled by enforcement

functions such as load and store, which require the correct fact before a word of

memory can be accessed. Therefore the resource cannot be used if no lock or the

wrong lock is acquired. When the lock is released, the vresource is handed back to the

lock and the old copy is invalid (because it is linear) so the vresource can no longer be

passed to access functions for the resource.

The “forget to release” error causes deadlock and is not solved by the abstract

machine. A programming language such as Clay, which implements the abstract

machine could notice when a function ends abandoning a linear variable and produce

an error message at compile time. The error is, however, not a memory safety

violation.

The “re-entrant locks” problem can also cause deadlock and is not solved by

the abstract machine. As with the “forget to release” error, it could be solved by
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implementing lock numbering in Clay. Lock numbering can be used to tell when

a lock is doubly acquired. A wrapper around the lock functions which implements

lock numbering would solve this problem.

To release a lock, a valid vresource must be handed to the release expression. Since

the vresource is only valid when the lock is held, it cannot be released when it is already

free. If a duplicate resource is created and handed to the release function, it will

block until the lock is acquired.

Together, lock, create lock, acquire, and release allow creation of a nonlinear

lock on a linear resource. Copies of the lock may be passed around but only one lock

copy may access the resource at a time. A locked resource cannot be accessed by

acquiring the wrong lock or no lock at all. An unheld lock is not able to be released.

This means that locks in my abstract syntax cannot cause memory safety violations

by improperly locking shared data. Standardly, locks implemented with acquire and

release functions, instead of a lock clause, can be risky if a lock is released in the

middle of a conditional expression [3]. However, an expression which uses a lock after

it is released will not type check in my abstract machine. Therefore, the machine

can safely use the more powerful acquire and release implementation.

3.5.5 Lock Discussion

One lock for multiple copies of a resource

The abstract machine allows a given lock to control only one copy of a resource even

though an operating system may have several copies of a resource to place under one

lock. This section discusses an alternate lock specification to the one presented in

the abstract syntax.

A basic lock controlling one copy of a resource is also known as a bit semaphore.

The lock bit needs 1 bit to encode on and off. An integer semaphore which encodes

numbers controls multiple identical copies of a resource thus allowing code to increase
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the semaphore by releasing resources into the lock and decrease the semaphore by

acquiring resources from the lock. When the lock integer is 0, the acquire function

blocks until some other code releases a resource into the lock.

lock = createlock(lock_int, lock_mem); // empty! no resources yet.

release(lock_int, lock, resource1); // now it has a resource

release(lock_int, lock, resource2); // 2 resources checked in

release(lock_int, lock, resource3); // 3 resources checked in

resource = acquire(lock_int, lock); // back to 2 resources

In the abstract syntax, unheld resources can be stored in R, the resource en-

vironment. In the multi-resource implementation, releasing an unheld lock adds a

resource to the lock instead of causing an error.

Acquire blocks until a copy of the resource is available and then decrements

the lock integer. The test and decrement operation needs to be atomic to prevent

overlapping acquire calls which decrement the lock below 0. Release increments the

lock integer. There is no upper limit on the number of unheld resources allowed in

this implementation.

The memory and resource environments for a lock integer i currently guarding 3

unheld resources:

M [i] = 3

R[i] = 〈fact, resource, resource, resource〉

Θ[i] = 〈Mem[I, Int(3)], tresource〉

The memory environment M is unchanged. The resource environment R contains

a tuple of the lock integer fact and all the unheld resources. The resource type

environment is unchanged because all the resource copies have the same type.

If desired, a maximum number of checked-in resources could be set. In this case,

the release function blocks if the maximum number of resources is already checked
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in.

My abstract machine uses one lock per resource because the device driver did

not required any multi-resource locks.

One lock for one copy of a multi-copy resource

The (E RELEASE1) evaluation rule in the abstract syntax tests M(i) and R(i) to

make sure the lock is held before releasing it. Without that test, (E RELEASE1)

will release any same typed resource with the lock for that type. If the lock is meant

to manage only one copy of the resource and falsely assumes only one copy exists, it

could release the wrong copy. For example, in Clay’s syntax:

@type0 Foo[type T ] = exists [intI] Mem[I, T ]

Foo[T ] is a linear size 0 state type which takes a type parameter T with kind type

and tracks a location of this T in memory. There can be easily several values of type

Foo[T ] in existence at one time for a given T (T could be the singleton integer 3).

If there are two values of type Foo[T ]; resource one and resource two:

lock = create lock(lock bit, lock bit Mem, resource one);

resource one = acquire(lock, lock bit);

release(lock, lock bit, resource two);

release(lock, lock bit, resource one);

The first call to release passes in the wrong resource but succeeds. The second call

would cause havoc as resource two is over-written or resource one is lost or the lock

bit fails to increment. Normally this problem cannot exist because only one copy of

a resource with that exact type exists. A previously released resource is invalid so

it can’t be re-released. In this case, there are multiple instances of the same typed
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resource.

There are several ways to handle this problem:

1. Release blocks if the lock is already unheld. This could be useful for process

communication. In a system with two communicating threads, if thread2 needs

to know that thread1 has begun a task, it can release an unheld lock. When

thread1 acquires the lock, it immediately releases leaving thread1 with a re-

source copy and leaving thread2 with the knowledge that thread1 has started

the task. Thread2 can then acquire the lock, retrieving its copy of the resource,

and both threads can continue.

2. Acquire returns both the resource and a special tag. If release takes a resource

and the tag then different threads could not release each others held locks. This

still means the wrong resource could be released by the thread holding the lock

but a release would show up as an error as the tag would be invalidated on the

first release.

3. The release expression takes the lock, the resource, a success expression, and a

failure expression. This would require a more complicated typing rule for the

release expression

The simplest of these choices was the first. Since there are reasons to pick all

three choices, the simplest won out. A lock which blocks indefinitely on release

causes deadlock, which is unwanted but safe behavior. This choice does not violate

the progress property because it allows a release expression to continually progress

to itself. The decision was largely arbitrary as all three options were viable.

3.6 Soundness Proofs with Concurrency and Locks

The Soundness proofs for the abstract syntax with the addition of locks are shown

in Appendix A. The addition of the R and Θ environments changed the proof
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statements as follows:

Preservation: If Ψe; Θ; ∆; Γ ` e : τ , Ψspare, Ψe; Θ; ∆; Γ ` (R, M, e : τ) and

(R, M, e) → (R′, M ′, e′), then Ψ′
e; Θ

′; ∆; Γ ` e′ : τ and Ψspare, Ψ
′
e; Θ

′; ∆; Γ ` (R′, M ′, e′ :

τ).

Progress: If (R, M, e) is closed and well-typed (C ` (R, M, e : τ) for some τ and

C = Ψ; Θ; ∅; ∅), then either e is a value or else there is some (R′, M ′, e′) so that

(R, M, e) → (R′, M ′, e′).

Erasure: If (R, M, e) is closed and well-typed (C ` (R, M, e : τ) for some τ and

C = Ψ; Θ; ∅; ∅) then the following holds:

1. If (R, M, e) 7→ (R′, M ′, e′) then erase((R, M, e))
?
7→ erase((R′, M ′, e′)).

2. If erase((R, M, e)) 7→ (L′, d′), then (R, M, e)
+
7→ (R′, M ′, e′)

and erase((R′, M ′, e′)) = (L′, d′).

3. If erase(e) is a value, then erase((R′, M ′, e′)) = (L′, d′) and erase((R, M, e)) =

erase((R, M, v)).

The major change from the original soundness proofs discussed in Section 2.3

is the addition of locks and the resource environment (R and its type environment

Θ). The resource environment is only affected by operations on locks. The new

soundness proofs are shown in Appendix A.
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4 Device Driver Abstractions

Since the study done by Chou et al. [4] found that drivers are the source of most

operating system bugs, a safe Ethernet adapter is a starting point for a safe OS

kernel. Ethernet adapters rely on interrupts, FIFO queues, and system state. The

safety abstractions of a driver can be guaranteed using state and configuration types.

Ethernet adapters pass packets between a machine and its Ethernet cable. The

packets are held in two FIFO queues: one to hold packets before they are transmitted

onto the network, and one to hold packets as they are received from the network.

Depending on whether the adapter uses direct memory access or programmed IO

(PIO), the FIFO queues may be located in kernel memory or on the device itself.

Adapters also have registers to hold status information. The adapter communicates

with the operating system through a driver.

This section explains the safety abstractions of a programmed IO Ethernet adapter

and then shows the formal types I use to guarantee the abstractions. Given some

basic starting assumptions (e.g. the driver is passed the correct data structure)

an Ethernet driver that implements the abstractions is not able to violate memory

safety or perform unsafe IO operations on the adapter. Section 5 describes my im-

plementation of the locks of the abstract machine and the formal types needed by an

adapter to make sure my 3Com Etherlink III 3c509 Ethernet driver implementation

handles the safety invariants of both the shared data structures and the adapter.

4.0.1 The 3c509 EtherLink III NIC adapter

The 3c509 network card is an example of an Ethernet adapter that uses programmed

IO. The FIFO queues are located on the adapter. The processor sends and receives

from the FIFOs a word at a time. The driver must take care not to overflow the

transmit FIFO by pushing more words than will fit or underflow the receive FIFO

by popping non-existent words. The 3Com Etherlink III technical manual [5] de-
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Figure 21: 3c509 window 0 registers [5]

scribes the abstractions a 3c509 driver is expected to support. These abstractions

are assembled into a collection of invariants and rules on the interaction between the

the 3c509 adapter and the operating system.

Accessing the Adapter

The 3c509 adapter is accessed through IO reads and writes to its registers which

are separated into seven 8-word windows. Each window contains a related group of

registers. One register can be accessed in any window. Writes to this register are

commands issued to the adapter. Reads access the status of the adapter. The other

registers require the adapter to be their specific windows. Each register has a set of

invariants it expects are true when it is accessed. For example, some registers can

only be read not written and others require statistics to be turned off, etc. A safe

3c509 adapter needs to guarantee the set of access invariants for each register.

Window 0 registers

Window 0 is used to initialize the adapter. Adapter interrupts are disabled when

window 0 is the current register window. This window contains the EEPROM

data/command registers which access stored adapter information such as the de-
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fault IO address and available cable connections. Only the EEPROM can be ac-

cessed before the adapter is initialized. The other registers in this window mirror

the EEPROM configurations and can only be accessed after initialization. Each of

these register is 16 bits in length. The registers for product and manufacturing ID

can only be read. All of the other window 0 registers can be written as well as read.

Window 1 registers

Window 1 is the standard operating window. The registers in this window include

transmitter and receiver status, free bytes in the transmitter FIFO queue rounded

down to a double word, and the PIO data registers which read from and write to

the FIFO queues. The transmitter status register and PIO data registers may be

read or written. The other registers in this window may only be read. As seen in

Figure 22, only 8 bits can be read from the TX status or timer registers.

The PIO register IO operations can transmit and receive one byte, one word or

two words at a time. The packet must be padded to a double word before transmit-

ting or receiving. Any buffers on the operating system side need extra space for this

padding.

The RX status register contains the length of the head received packet in the
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RX FIFO. It is unsafe to read more than this length from the RX FIFO. The length

shown in the RX status register in incremented as packet bytes are received and

does not reflect how much of the packet has been read by the driver. For safety, the

driver should check packet status after the whole packet has been received and the

adapter status register shows an RX complete interrupt. Then the driver needs to

read the packet and issue an RX discard command to go to the next RX packet’s

status.

It is unsafe to write to the TX status register unless the TX complete interrupt

is triggered. Other writes risk making packet status inconsistent. The free transmit

bytes register takes an extra IO cycle to update after packet transmission is com-

pleted. A safe driver will make some other IO operation between transmitting a

packet and reading the free transmit bytes register.

Window 2 registers

Window 2 holds the station address. It must be read from the EEPROM and written

here before the receiver is enabled.

Window 3 registers

Window 3 manages the transmit and receive FIFO queues. The actual number of

free bytes in each queue is available here. As with free transmit bytes, free receive

bytes should not be used to calculate RX packet length because of the overhead

involved.

Window 4 registers

Window 4 contains diagnostic registers and the available controller types (coax,

twisted pair, or a combination).

57



Window 5 registers

Window 5 contains current masks and thresholds. These registers are set through

commands and do not need to be accessed.

Window 6 registers

Window 6 holds the statistics registers. Statistics must be disabled before these are

read.

The command register

The command register accepts 16 bit IO writes. Bits 11-15 of a command are the

command itself. Bits 0-10 hold arguments to the command or 0 if there are no

arguments. If a command takes longer than one I/O cycle to complete, the driver

must poll the adapter status register for a non-busy signal before continuing with

further IO operations. Each command is listed below with a short explanation and

its list of calling invariants.

Global Reset Resets the adapter and clears the FIFO queues. Requires a 1ms

delay where no other IO operations are allowed.

Select Window Selects the window given as the argument. Windows 0-7 are legal

even though there is no window 7.

Start Coax Turns on the coax transceiver. This command requires an 800us delay.

RX Disable Disables packet receiving.

RX Enable Enables packet receiving.

RX Reset Disables the receiver and empties the receiving FIFO queue.

RX Discard Discards the head packet in the receiving FIFO queue and its status.

This command makes the adapter busy for an indeterminate length of time and

the driver must poll the status register for a non-busy signal before proceeding.
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TX Enable Enables the transmitter.

TX Disable Disables the transmitter.

TX Reset Disables the transmitter, empties TX FIFO queue, resets the available

TX space, and restarts the transmitter.

Request Interrupt Requests the adapter to set an interrupt.

Acknowledge Interrupt Acknowledges and clears specific interrupt triggers. The

possible interrupts are:

• Interrupt Latch - The actual interrupt.

• Adapter Failure - This occurs with any errors not shown by other interrupt

triggers. The adapter will not proceed until a global reset command is

issued. This interrupt is triggered by safety violations but is not, itself,

unsafe.

• TX Complete - Packet transmission has completed.

• TX Available - There is room in the TX FIFO for a requested number of

packet bytes.

• RX Complete - A packet has been completely received.

• RX Early - The first part of a packet has arrived.

• Interrupt Requested - An interrupt was requested.

• Update Statistics - The statistics are full.

Set Interrupt Mask Chooses which interrupt triggers to allow. The masked trig-

gers can still be read but won’t generate an interrupt on their own.

Set Read Zero Mask Masks interrupt triggers so that their status register bit is

always a 0.

Set RX Filter Sets the receiving filter to individual, multicast, broadcast, or all.

Set RX Early Threshold Sets the amount of a packet that should be received

before a RX early interrupt is generated. The threshold can be any multiple of
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4 between 0 and 1792. If the threshold is greater than 1792, RX early is disabled.

The adapter truncates arguments to a 2-word multiple. If the threshold is set

to less than 60, there may be packet collisions. Therefore, any threshold value

greater that or equal to 60 and less than or equal to 1792 is safe.

Set TX Available Threshold Sets the number of free bytes in the TX FIFO

queue needed to transmit. The threshold can be any multiple of 4 between

0 and 2,044. If the threshold is greater than 1792, TX available is disabled.

Set TX Start Threshold Sets the number bytes in TX FIFO queue before the

packet starts to transmit. The threshold can be a multiple of 4 from 0 to

1792. The adapter truncates arguments to a 2-word multiple. If the threshold

is greater than 1792, early transmission is disabled and the packet transmits

when all of it has reached the TX FIFO queue. Therefore, any threshold value

less than or equal to 1792 is safe.

Statistics Enable Enables statistics.

Statistics Disable Disables statistics. Statistics must be disabled before reading

them. The adapter still collects statistics while they are disabled; leaving them

disabled for very long will cause some statistics to be incorrectly updated.

Stop Coax Stops the coax transceiver. This command requires a 800us delay.

These commands affect several adapter states. Global Reset, Start Coax, and

Stop Coax require a known waiting period before further commands can be issued.

The Select Window command changes the current register window. Statistics Enable

and Disable enable or disable statistics. RX Reset, TX Reset, Global Reset, and RX

Discard affect the amount of free space in the FIFO queues. RX Discard makes

the adapter busy for an unspecified amount of time and requires polling the status

register for a non-busy signal before any further IO operations may occur. The

driver needs to correctly update state-type values for these states when commands
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are issued.

The status register

The 16 bit status register allows the driver to access several adapter state conditions.

This is the only register that can be safely accessed when the adapter is busy. The

status bits include the interrupts, the bit which signals if the adapter is busy, and

bits for the current window.

The Packet Receiver

When an RX Complete interrupt is triggered, a full packet is waiting in the receive

FIFO. Its length and any errors are shown by the RX status register in window 1.

If there were errors the driver must issue an RX Discard command. Otherwise, the

length needs to be padded up to a double word before the packet is read from the

RX PIO data register. After receiving the packet, an RX Discard command needs

to be issued to remove the packet from the receive FIFO and update the RX status

register.

The Packet Transmitter

Packet transmission requires three steps. First a packet information word is written

to the TX PIO data register. The word contains the actual packet length, whether

an interrupt is wanted after complete transmission, and the CRC which determines

who pads the packet (driver or adapter). The CRC bit is usually 0 so the adapter

does any necessary padding. In the second step, a word equal to 0 is written to

the TX PIO data register. In the third step, the packet is written to the TX PIO

data register a double word at a time. The packet must still be rounded up to a

the nearest double word before it is sent even though the adapter handles the actual

padding values.
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4.0.2 Driver Functionality

The driver consists of setup, start, transmit, receive, stop, statistics, and multicast

functions. The receive function is interrupt driven. The driver shares a device data

structure with the operating system. I added a lock bit to the end of this data

structure. Each function called by the operating system acquires the lock on the

data structure before proceeding.

The setup function locates an inactivated 3c509 adapter if there is one and acti-

vates it. Setup uses contention select to pick an adapter if more than one 3c509 is

present. The setup function allocates space for a device data structure if the oper-

ating system has not already allocated space for it. It then actives the adapter and

initializes it with the base IO address and the interrupt request line. Setup initial-

izes the fields of the device data structure and puts pointers to the start, transmit,

stop, statistics and multicast functions into the structure. This function leaves the

adapter in window 1, the normal operating window.

The start function takes the adapter from activated to enabled. It first resets

transmitter and receiver FIFO queues. This clears the queues and their status and

free space registers. The start function then calls an interrupt setup function with

the irq and a pointer to the interrupt handling function. It sends an activation IO call

to the adapter in case it has been de-activated and then starts the coax transceiver

or twisted pair. After that it clear all of the adapter statistics and enables them. It

enables the transmitter and receiver and finally resets the wanted interrupt triggers

and clears any leftover interrupts. At this point, the adapter is ready to be used.

When a incoming packet has completely reached the adapter, it generates an

interrupt which is passed to the driver’s interrupt function. The interrupt function

determines if the interrupt heralds a received packet or an error and either calls the

receive function or updates a statistics data structure.

The receive function reads in packets from the receive FIFO on the adapter. It

62



checks the length of the head packet in the RX FIFO queue. If the RX Status

register indicates that the packet was received correctly, the receive function creates

a buffer to hold the packet and reads it into the buffer 2 words at a time from the RX

PIO data register. When the packet is read, an RX discard command is issued to

the adapter. This removes the head packet form the RX FIFO and update the RX

Status register to reflect the status of the next packet. The receive function handles

packets until the queue is empty of completed packets. Incorrectly received packets

are discarded.

The stop function disables the adapter without deactivating it. It turns off

adapter statistics, disables the transmitter and receiver, turns off the coax or twisted

pair transceiver and removes the irq from the operating system’s collection of inter-

rupts. After the stop function is called, the adapter is not usable until the start

function is called again.

The multicast function allows the operating system to update the type of packets

it wants to receive without disabling the adapter. The operating system chooses

a combination of direct, multicast, broadcast and promiscuous modes. Multicast

implies broadcast and promiscuous implies all three other modes.

The statistics function updates a statistics data structure and returns a pointer to

it. To do this, it disables adapter statistics, changes to window 6, reads all statistics

and updates the data structure, and then re-enables adapter statistics and changes

back to window 1.

The driver also includes various support functions. These include a transmitter

timeout function, a statistics updating function and EEPROM reading functions.

The timeout function is called by the transmit function if the adapter has not had

room in its TX FIFO for a new packet for too long. Timeout clears the interrupts

and resets the transmitter. This discards all packets waiting in the TX FIFO and re-

starts the transmitter. The statistics update function reads each adapter statistic and
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updates the relevant OS statistic in the statistics data structure. It disables adapter

statistics before reading them and enables them again afterwords. The EEPROM

functions allow the driver to read the EEPROM before and after activation. Both

send the desired EEPROM data location to the EEPROM command register, wait a

required amount of time, and then read the data from the EEPROM data register.

4.1 Operations on a PIO Ethernet Adapter

An Ethernet adapter supports a limited set of operations which allow it to initialize,

send and receive packets, generate interrupts, track adapter/queue status, and collect

statistics. An Ethernet adapter is accessed through IO operations on its registers

which are separated into different windows. The FIFO queues for a PIO adapter

are located on the device and are also accessed through IO operations. A type-safe

Ethernet driver has a safe interface for each operation.

The initialization operations only access the set of IO addresses the device might

listen on. When the adapter is initialized, a base IO address is picked and all future

IO operations use that base address. The operations can be grouped into a few

categories based on their safety requirements.

The first category of IO operations are oprtaions on the FIFO queues. Operations

on the send and receive FIFO queues are only done when the adapter is in an

initialized and ready state. The read and write operations access data in allowed

increments and the overall amount of data accessed is padded to a specified boundary.

The driver only reads data that is actually in the receive queue. During the read

operation, the adapter is in the correct window for the receive FIFO and isn’t busy.

This data is read into a waiting buffer that is large enough to hold it. Likewise, the

driver only writes data from an existing buffer into the send queue when the amount

of data does not overflow the buffer or queue. This operation also requires a specific

window and an non-busy adapter. These are the only safe operations that can be
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done on a PIO adapter FIFO queue.

The second category of IO operations are the status operations. The data read by

status operations includes triggered interrupts, free bytes in the send queue, amount

of data available in the receive queue, and the current window. These operations read

an allowed amount from a register in the correct window. Some status operations are

allowed when the adapter is busy. (This lets the driver poll to see when the device

is no longer busy). Some status registers allow writes to update their information.

The act of writing triggers the adapter to update these status registers.

The third category of IO operations are commands to the adapter. Commands

are IO writes of a specific size (e.g. 16 bits) to one command register. Commands

might be delayed or ignored if issued while the adapter is busy so the adapter needs

to be non-busy unless it is known that delayed/dropped commands cannot cause

safety violations. Some commands cause the adapter to become busy and for safety,

the driver waits until the adapter is free again.

The final category of IO operations are the general read and write operations.

These test and set the adapter settings. These operations only take place when the

adapter is in the correct window. Some operations come in read/write pairs and

some are only a read or only a write. Each general operation accesses at most its

maximum number of allowed bytes (generally 1,2, or 4). Some operations are only

performed after adapter statistics are turned off. Like the commands, the general

operations only occur when the device is non-busy.

The operations described above are the only operations in a safe PIO Ethernet

driver. To formalize an interface for these operations, I first extend some type

concepts from Section 3 and then create types for the IO operation interfaces.
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4.2 Extending Types to Support Operations

This section focuses on extending type concepts to provide more support for OS and

device abstractions. Starting from Mem(I, τ) I create types to enforce abstractions

on collections of memory, state in an operating system, and the IO interface to

Ethernet adapters.

4.2.1 Collections of Memory

The Mem(I, τ) type is used to track the state of a memory word. A Mem(I, τ) can

therefore be called a memory state type. The concept of memory state types can be

extended to track the state of a collection of memory words.

A type for such a collection of memory words can be built from the existing

types in the abstract syntax: Pair(I, X, Y ) =lin 〈Mem(I, X), Mem(I + 1, Y )〉 :
lin

0 .

The Pair type is the memory state-type for a pair of consecutively data.

4.2.2 State Types

Operating systems keep track of a lot more state than just the type of memory words.

For example, an operating system might need to track whether interrupts are on or

off, or if the Ethernet adapter is up and running. I extended the concept of “memory

state types” to “state types” which are linear size 0 and track states throughout the

operating system. The generalized state types are still linear and size 0 so they take

up no space in memory and have no associated run time cost.

As an example, the abstract syntax for an interrupt state type could be intr :

Intr(I) :
lin

0 where I is 0 or 1 depending on whether interrupts are turned on or off. If a

single copy of intr exists in the operating system, it can be passed around and used to

track the current state of interrupts. The enforcer expressions associated with it are

those expressions which require interrupts to be on or off or which enable or disable

interrupts. As Mem enforces the abstraction of linearity on a word of memory, Intr
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enforces abstractions on the sections of OS code concerned with interrupts.

The abstractions of safe IO operations can be tracked by state types. Given the

IO operation safety criteria, the driver needs to use state types for:

• The current window

• The base IO address

• Adapter statistics status

• Adapter busy status

• TX FIFO free space

• RX FIFO used space

These six states track all of the critical information in an Ethernet adapter. Writes

to and from a buffer and the PIO TX and RX registers additionally use a buffer

state-type to ensure that the driver does not overflow or underflow an operating

system buffer.

Each state needed by the driver is expressed as a formal state type:

IOAddressState(iAdapter, iAddress) :
lin

0

WindowState(iAdapter, iWin) :
lin

0

BusyState(iAdapter, iBusy) :
lin

0

StatisticsState(iAdapter, iStats) :
lin

0

QueueState(iAdapter, iQueue, iSpace) :
lin

0

All of these states are tied to a specific adapter in case more than one network

card is present. The IOAddressState tracks the current base IO address. The

state prevents IO operations outside the legal range of addresses. WindowState

tracks the currently used register window. The state ensures that register are only
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accessed while the adapter is in the correct window. BusyState indicates whether the

adapter is busy. Only the adapter status register is read when this state shows that

the adapter is busy. StatisticsState tracks whether adapter statistics are currently

turned on or off. This state needs to indicate off before statistics can be read from

window 6. The driver needs two values of type QueueState to track the amount of

known free space in the TX FIFO and the amount of known used space in the RX

FIFO. As long as the known amounts are conservative (there may be more actual

free space in the TX FIFO), this state prevents overflow and underflow of the queues.

Together these state track all safety concerns of the adapter.

One additional state type is needed to guarantee safety on the operating system

side. Packets in the operating system are stored in buffers. The driver needs to make

sure it does not overflow or underflow these buffers:

BufferState(iHeadAddress, iDataStart, iDataEnd, iTailAddress) :
lin
0

The BufferState type shows the current address boundaries for a buffer. This buffer

follows the convention for an SK buffer in a Linux adapter driver. HeadAddress

points the the first byte in the buffer. DataStart points to the first byte of ac-

tual data. Unneeded packet headers may fill the space between HeadAddress and

DataStart. DataEnd points to the byte after the end of the data. Similarly,

TailAddress points the the byte after the end of the buffer. Overall, iHeadAddress ≤

iDataStart ≤ iDataEnd ≤ iTailAddress. If this relationship is preserved, the buffer cannot

overflow or underflow.

4.2.3 Configuration Types

Operating system abstractions have sets of static rules which describe the allowed

relationships between state-type variables. These configuration rules describe the
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values that a set of state-type variables must have in order to perform an action,

such as sending a packet to an Ethernet adapter. I further extended the concept

of state types to configuration types which are constant. Since configuration type

variables are constant, they do not need to be linear but they are still size 0.

An IO function specification that allows an Ethernet adapter to communicate

with its driver needs to ensure that several different states are in agreement. For

example, a safe IO call to send a word of memory to a specific port on the device

might need to know the following:

1. The register is legal.

2. The register can be written.

3. The device is either not busy or it doesn’t matter.

The third need can be expressed as a state type: DeviceBusy(IDevice, IBusyState) :
lin

0 .

which expresses whether the device with identifier IDevice is busy or not. The iden-

tifier is a singleton integer unique to the device. IBusyState is 0 or 1 depending on

the state of the adapter. A type that can relate different state types is needed to

package all three safety needs together. This type specifies the different acceptable

configurations of state types and is named a configuration type.

Three basic configuration types are needed to enforce the abstractions on the base

IO address, commands written to the adapter, and general register reads and writes.

IO packet data read and write operations and status read and write operations are

possible on such a limited set of ports that it makes sense to write individual function

interfaces for these operations. The remaining IO operations use the configuration

types described below to share a smaller set of function interfaces.

IOAddressConfig(iBus, iLowAddress, iHighAddress) :
non

0

The IOAddressConfig type states the acceptable base IO address range for a

69



given bus. In the case of the ISA bus, this range is 0x200 to 0x3E0, inclusive. This

configuration type is used to set the base IO address to a legal value.

CommandConfig(iCommand, iTakesArguements, iWaitTime,

iChangesStats, iChangesBusy) :
non

0

The CommandConfig type lists the constraints on writes to the command reg-

ister. The first parameter is the command itself. This allows an IO expression to

match a CommandConfig type value to a singleton integer command. The sec-

ond parameter indicates whether the command takes arguments. Arguments are bit

masks and are added to the command before it is sent to the adapter. The IO ex-

pression checks that the arguments, if any, fit into the given 11 argument bits. The

wait time indicates the time in µ seconds that the driver must wait after issuing the

command. This allows the driver to handle commands which take more than one IO

cycle to complete. An IO expression matches this parameter to a singleton integer

time. The fourth parameter indicates if the command causes adapter statistics to

turn on or off. Three values (0,1,2) could determine if it turns statistics on, off, or

has no affect on statistics. Commands which change statistics cause a statistics state

type to change. The last parameter indicates if the command may be issued while

the adapter is busy. Some commands such as RX Discard take an unknown amount

of time to complete and cause a busy state type to change.

RegisterConfig(iWindow, iBytes, iRead, iWrite, iIsRangedPort, iLowPort, iHighPort,

iStatsOnOk, iAdapterBusyOk, iChangeQueue) :
non

0

The RegisterConfig state type list the configuration of states and values neces-

sary to access a particular register. The first parameter is the window of the register.

The second parameter is the number of bytes that are allowed to be accessed at once.
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If bytes is 4, as in the case of the TX PIO data register, the register may be accessed

by the byte, word, or double word. The read and write parameters indicate which

type of access is allowed. Some registers allow both reads and writes so it was sim-

pler to encode this as two parameters. The fifth parameter indicates whether the

port actually occupies a range of registers. The station address is an example of a

ranged port. A ranged port allows one RegisterConfig to control access to the six

consecutive station address ports. The lowest and highest ports of a ranged port are

the next two parameters. If the port is not ranged, these should both be the actual

port. The stats parameter indicates whether adapter statistics may be turned on

when this register is accessed. The statistics registers require that adapter statistics

be turned off. The busy parameter indicates if the adapter is allowed to be busy.

Only the status register may be accessed when the device is busy. The last parame-

ter indicates whether accessing the register changes the free space in a FIFO queue.

For example, writes to the TX PIO data register decrease the free space in the TX

FIFO queue. Together, these parameters list all the configuration rules related to

accessing a register.

4.2.4 A Typed Function Specification

The formal interface for a PIO FIFO data read uses most of the state and configu-

ration types. Data is read in repeated accesses a few bytes at a time. The PIO data
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read operation takes care of the repetition.

(T PIO data read)

C1 ` iBaseAddress : Int(IBaseAddress)

iBufferAddress : Int(IBufferAddress) iDataSize : Int(IDataSize)

RegisterConfig(IWindow, IBytes, IRead, IWrite,

IIsRangedPort, ILowPort, IHighPort,

IStatsOnOk, IAdapterBusyNotOk, IChangeQueue)

C2 ` ebuffer state : BufferState(IHeadAddress, IDataStart, IDataEnd, ITailAddress)

C3 ` eaddress state : IOAddressState(IAdapter, IBaseAddress)

C4 ` ewindow state : WindowState(IAdapter, IWindow)

C5 ` ebusy state : BusyState(IAdapter, INotBusy)

C6 ` equeue state : QueueState(IAdapter, IRXQueue, IUsedSpace)

where IDataStart <= IBufferAddress, IBufferAddress <= ITailAddress,

IDataSize > 0, IBufferAddress + IDataSize + 3 <= IDataEnd, (3 for padding),

IUsedSpace ≥ IDataSize, IRead = 1 and IWrite = 0

C1, C2, C3, C4, C5, C6,` PIO data read(iBaseAddress, iBufferAddress, iDataSize,

ebuffer state, eaddress state, ewindow state, ebusy state, equeue state)

: 〈BufferState(IHeadAddress, IDataStart, IDataEnd, ITailAddress),

IOAddressState(IAdapter, IBaseAddress),

WindowState(IAdapter, IWindow),

BusyState(IAdapter, INotBusy),

QueueState(IAdapter, IRXQueue, IUsedSpace − IDataSize)〉

This IO operation only reads an existing number of bytes from the RX FIFO

queue and places the bytes into an existing buffer that is large enough to hold them.

The interface guarantees that the window is correct and the adapter is not busy.
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(This port is not ranged, statistics do not matter, and read does change the used

space in the RX FIFO queue.)

The various state-type values are set by IO status operations and by values in

the shared data structure of the driver. The adapter adapter status register contains

information on whether the device is currently busy and the data sturcture has a

field for the IO address. Function interfaces for the status read and IO address read

set the state types to their correct values.
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5 Implementation

I implemented locks and a safe 3Com Etherlink III 3c509 driver in Clay. The driver

depends on locks to safely access a shared data structure. Using an OS starter kit,

the OSKit[9], I implemented a small multi-threaded operating system, Shale, in C.

The driver compiles to C++ and then to an object file, which is linked with the

C code. My 3c509 driver is guaranteed to only make safe IO calls and safe buffer

reads/writes. It is able to send and receive packets. This section discusses my lock

implementation, my 3c509 driver implementation, and the small operating system.

The next section discusses benchmarking my driver.

5.1 Locks

This implementation of locks is written in Clay’s syntax and matches the abstract

syntax mentioned in Appendix A.

Locks are built from three basic types.

type Int[int I] = native

@type0 Mem[int I, int A] = native

typedef Ptr[int I, int T] = @[Int[I], Mem[I,T]]

Int[I] is a singleton integer and a pointer to memory location I. Mem is the

memory State Type which tracks a word of linear memory. Mem[I, T ] means that

memory location I contains a value of type Int[T ]. Ptr[I, T ] is a linear pair of

a pointer to linear memory and its associated Mem. The pointer cannot be used

without its Mem so it is a convenience to handle them together.

Locks come in two related types:

type0 Lock0[int Bit, @type0 Resource] = native

typedef Lock[int Bit, @type0 Resource] =

.[Lock0[Bit, Resource], Int[Bit]]
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The first type is the lock itself. This type is nonlinear and size 0 so that copies of

it can be passed around to all code sections which might need the lock; no extra

memory will be needed for it at run time. The second type is a pair of the lock and

a pointer to the lock bit. The “.” before the pair brackets ([ ]) states that the pair

is nonlinear. Since all accesses to the lock will require the lock bit, it makes sense

to bundle them together. Keeping the size 0 lock type separate allows flexibility in

declaring the location of the lock bit. The bit location could be separately declared

or could be in a chosen place in a locked data structure (e.g. the first bit). The type

checker verifies that the lock bit pointer matches the Lock0 it’s bundled with.

Two functions are used to create locks:

native Lock0[B,R] create_lock0 [@type0 R, int B]

(R resource, Mem[B,0] bit) limited[0];

Lock[B,R] create_lock [@type0 R, int B] (R resource, Ptr[B,0] bit_p)

{

let (bit_addr, bit_mem) = bit_p;

let lock0 = create_lock0(resource, bit_mem);

return .(lock0, bit_addr);

}

The first function takes the resource state type value, the lock bit pointer, and its

memory state type value and returns a Lock for the resource. The memory state

type and resource state type values are not returned, thus preventing access to the

resource until the lock is acquired. This function calls a limited native function

which takes the memory state type and resource state type values and coerces them

to a Lock0 value. The native create lock0 function is limited which means it handles

only size 0 types and has no need of a matching C function. The Lock0 value gets

bundled with the lock bit pointer and returned as the Lock. In this implementation,
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the lock bit is allocated and initialized to 0 before the create function is called. The

type checker will verify that the lock bit value is actually 0.

The function to acquire a lock is native. It takes a Lock (a pair of a Lock0 and

its lock bit pointer) and goes to C to acquire the lock:

native R acquire [int B, @type0 R] (Lock[B,R] lock);

native {

// test_and_set_bit is atomic x86 assembly btsl on bit 0

inline void acquire(unsigned long lock) {

while (test_and_set_bit(0, (void *) lock)==1);

}

}

The C acquire function uses an atomic swap operation to block until the lock bit

value is 0 and then sets it to 1 claiming the lock. The Clay function header coerces

the resource state type out of the Lock and returns it.

The release function is also native. It takes a Lock and its resource state type

value and goes to C to release the lock:

native void release [int B, @type0 R] (Lock[B,R] lock, R resource);

native {

// test_and_clear_bit is atomic x86 assembly btcl on bit 0

inline void release(unsigned long lock){

while (test_and_clear_bit(0, (void *) lock)==0);

}

}

The C release function uses an atomic swap operation to block until the lock bit

value is 1 and then sets it to 0 releasing the lock. The resource state type value is

not returned and must once again be acquired to use it.
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Locks in action

To demonstrate the Clay lock implementation, a collection of memory state types is

formed and locked. Unsafe operations on this lock are caught by the Clay compiler.

The memory to be locked is passed in as array of consecutive Mem. The array type

follows:

@type0 LArrayS[int I, int J, @type0<-(int) F] = struct

{

F[I] data;

LArray[I+1,J,F] next;

}

typedef LArray[int I, int J, @type0<-(int) F]

= LIf[I!=J,LArrayS[I,J,F]]

LArrayS is a structure containing linear size 0 data and an array of more data.

LArray is an array of linear size 0 data with the same basic type. An array of type

LArray[I, J, F ] contains linear type 0 data with the indices I through J − 1. F is a

function that maps an index to its data. LIf is a union type that contains a linear

size 0 type if a given condition is satisfied. In this case the LIf contains the next

LArrayS structure as long as there is another one in the array (I 6= J).

A stack can be represented as a linear array of Mems (assuming you want only

32-bit integers). Such a stack has the type

LArray[0, Max, fun[int I] exists[int A] Mem[Base + (4 ∗ I), A]

where the stack addresses run from base : Int[Base] to max : Int[Base + 4 ∗

(Max − 1)]. Mems can be allocated from the stack using an allocation function.

The recursive type fun needed to create an LArray is described in [14] but not

presented in the abstract machine.
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@[Ptr[Base+4*I,N], Int[Base+4*(I+1)],

LArray[I+1,J,fun[int I] exists[u32 A] Mem[Base+4*I,A]]]

alloc[u32 I, u32 J, u32 Base, u32 N, I<J]

(LArray[I,J,fun[int I] exists[u32 A] Mem[Base+4*I,A]] stack,

Int[Base+4*I] ptr, Int[N] value);

The function is not relevant to this example and calls several other Clay functions

so only its header is shown here. alloc takes a stack of linear memory, a pointer to

the next free memory location, and an initial value. The function returns a pointer

to the allocated and initialized memory (a pair of its Mem[Base + 4 ∗ I, N ] and its

address Int[Base+4 ∗ I]) as well as the updated next pointer and the, now smaller,

stack.

The collection of memory that is locked below is a consecutively stored pair of

integers that add to 100. The memory state type which tracks this pair is show here:

typedef AddedPair[int I] =

exists [s32 N, s32 M; M==100-N] @[Mem[I,N],Mem[I+4, M]]

AddedPair[I] create_addedpair [int I, s32 A, s32 B; B==100-A]

(Mem[I,A] x_mem, Mem[I+4,B] y_mem)

{

return @(x_mem, y_mem);

}

Locking an AddedPair state-type prevents access to the pair of integers it tracks.

Given a stack of linear memory and a pointer to its base:

LArray[0,200,fun[int I] exists[int A] Mem[Base+4*I,A]] stack

Int[Base] base

We can dynamically allocate some linear integers and a lock bit (also a linear integer)

from the stack and create an AddedPair:

let (x_ptr, base stack) = alloc(stack, base, 4);
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let (y_ptr, base, stack) = alloc(stack, base, 96);

let (bit_ptr, base, stack) = alloc(stack, base, 0);

let (x_addr, x_mem) = x_ptr;

let (y_addr, y_mem) = y_ptr;

let resource = create_addedpair(x_mem, y_mem);

x ptr, y ptr, and bit ptr are allocated from the linear memory stack and initialized

to the passed in values. They are all of type Ptr meaning they are a linear pair

of a pointer and its Mem. The fourth and fifth lines of code separate each Ptr

into its component address and Mem. This invalidates each original linear Ptr.

The resource is then created from the two memory state types, invalidating them.

Invalidating used linears makes the following code mistakes impossible:

let resource2 = create_addedpair(x_mem, y_mem); // error caught now

let resource2 = resource; // error caught later

The first mistake attempts to create a second AddedPair and this line fails the

type checker because x mem and y mem were invalidated upon creating the first

AddedPair. The second mistake attempts to make an alias to resource. The line

of code succeeds but it invalidates the original resource so any future attempts to

use resource with fail the type checker because resource is invalid. These caught

errors show that Clay correctly handles linear values and does not allow them to be

aliased or used after they become invalid.

The following code locks the resource, and duplicates the nonlinear lock.

let lock = create_lock(resource, bit_ptr); // linear resource invalid

let lock2 = lock; // lock is still valid

let lock3 = lock; // lock = lock2 = lock3

The create lock function reads the linear resource and the Mem component of the

bit ptr and does not return them. This invalidates the resource and the lock bit

Mem so only the lock has control over resource and only the lock can load or store
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the lock bit. If we attempted to read resource after this, the type checker would

catch it:

let [ ] (x_mem,y_mem) = resource; // read resource..fails

This mistake attempts to access the locked, but not acquired, resource. The type

checker catches it because resource has become invalid.

The next section of code acquires the lock, separates resource into its compo-

nents, and prints the values it was guarding.

let resource = acquire(lock); // linear resource valid

let [ ] (x_mem,y_mem) = resource; // linear resource invalid

let (x_mem, x_data) = load(x_addr, x_mem); // load value of x (4)

let (y_mem, y_data) = load(y_addr, y_mem); // load value of y (100-4)

print_int(x_data); // prints 4

print_int(y_data); // prints 100-4

The lock is now held so the resource can be accessed.

To release the lock, the AddedPair is re-formed and passed to the release function:

let resource = create_addedpair(x_mem, y_mem);// linear resource valid

let lock = release(lock, resource); // then invalid

The lock is now unheld and resource is invalid.

If the values of x and y no longer added to 100 or an integer in a different memory

location was substituted, the type checker will catch the error:

let y_mem = store(y_addr, y_mem,10); // y = 10 (10 != -4+100)

let resource = create_addedpair(x_mem, y_mem); // bad addition..fails

let resource = create_addedpair(x_mem, z_mem); // bad location..fails

The type checker find errors when creating this added pair. It will also catch errors

where the wrong integer is placed into the resource. The memory locations of x and

z are not consecutive so the create addedpair function fails to type check.
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Attempts to re-release the lock will also fail because resource becomes invalid on

the first call to release:

let lock = release(lock, resource); // re-release..fails

The type checker catches this re-releasing error because the linear resource is invalid.

If the lock is re-released using a different, but valid, AddedPair, the lock will block

until another thread acquires it.

Because the lock is nonlinear, copies can be made and used interchangeably even

though only one resource may ever be acquired at a time:

let resource = acquire(lock2); // uses lock 2

let lock4 = release(lock3, resource); // lock = lock2 = lock3...

Prevented lock problems

This lock implementation matches the locks in the abstract syntax. Of the four lock

problems, the abstract syntax and implementation for locks provides compile time

prevention of “forget to acquire”. Additionally, locks may not be released without

a matching resource which is a partial solution to “release unheld lock”. The “re-

entrant lock” problem could be solved through lock numbering and Clay is intended

to catch dropped linear values at the end of a function2 which would provide an

implementation solution to the “forget to release” problem.

Minimizing trips to C++

All types and functions declared to be native must be defined in C++. The C++

code is not guaranteed to be safe so minimizing trips to C++ is important.

When the Clay lock code is compiled, it produces extern statements for all non-

limited native functions. These functions must be defined in C++.

extern void acquire(unsigned long lock);

2Clay does not currently notice dropped linear values at the end of a function but this
could be added in the future.
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extern void release(unsigned long lock);

Both functions contain only 1 line of C++ code and the atomic functions they

depend on contain 1 line of assembly code. The functions are short enough that

inspection gives reasonable assurances of safety.

The following shows a compilation and run of the lock code example described

above. For testing and demonstration purposes, print lines have been included which

show the memory location of the lock bit and its value as the lock is acquired and

released.

#prompt) clay lock.clay

Successful compilation! 3.885883 seconds.

#prompt) g++ lock.cc

#prompt) a.out

lock at 162988048

lock before acquire = 0

lock after acquire = 1

4

96

lock at 162988048

lock before release = 1

lock after release = 0

lock at 162988048

lock before acquire = 0

lock after acquire = 1

lock at 162988048

lock before release = 1

lock after release = 0

If the above were run without the C function printlines, the output would simply
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print the values of x and y in the example. 4 and 96 are the values assigned to the

pair of integers.

It would be possible to write the acquire and release functions in Clay by sub-

stituting the while loops with a special type of recursive for-loop that allows type

parameters to change as the loop cycles. The calls to the atomic assembly instruc-

tions need to remain native since there is currently no Clay equivalent to C’s assembly

calls.

Allocating different sizes of memory

The lock example showed only 32-bit integers. The Mem type and alloc function

could be easily changed to allow allocation of any memory size.

@type0 Mem1[int I, type T] = native

typedef Mem8[int I, type T] = @[Mem1[I,T], Mem1[I+1,T], Mem1[I+2,T],

Mem1[I+3,T], Mem1[I+4,T],

Mem1[I+5,T], Mem1[I+6,T], Mem1[I+7,T]]

typedef Mem16[int I, type T] = @[Mem8[I,T], Mem8[I+8,T]]

typedef Mem32[int I, type T] = @[Mem8[I,T], Mem8[I+8,T],

Mem8[I+16,T], Mem8[I+24,T]]

These memory state-types track memory by the bit, the smallest unit available. In

this implementation, Mem (Mem32) is a pair of consecutive smaller Mems. I could

also have defined it as two Mem16s or 32 Mem1s.

A separate allocation function would be needed for each size of allocation. For

example, the allocation function for unsigned 16-bit integers:

@[Ptr16[Base+I,N], Int[Base+I+16],

LArray[I+16,J,fun[int I] exists[int A] Mem1[Base+I,A]]]

alloc16 [u32 Base, u32 I, u32 J, u16 N; I+16<J]

(LArray[I,J,fun[int I] exists[int A] Mem1[Base+I,A]] stack,
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Int[Base+I] ptr, Int[N] value);

This function allocates 16 1-bit Mems and returns the Ptr to the allocated memory,

and the updated stack and next pointer.

5.2 The 3c509 Adapter

This section discusses my implementation of the 3c509 driver. I talk about imple-

mentation choices I made based on an existing 3c509 driver and the architecture in

my computer. The benchmark performance of the driver is discussed in Section 6.

5.2.1 Implementation Choices

My safe 3c509 driver is based on Donald Becker’s 3c5x9 driver version 1.18 [1].

I ported the driver to Clay using the state and configuration types designed in

Section 3. This driver handles several different 3Com network adapters and several

bus types (EISA, ISA, and MCA). The x86 architecture running Shale includes the

ISA bus and the 3c509 adapter so the safe driver only includes code for the 3c509

running on a ISA bus. Donald Becker’s implementation differs slightly from the

3Com manual [5]. Since the 3c5x9 driver is already known to work, the safe driver

mimics this driver rather than the exact steps outlined by the 3Com manual. This

allows general speed comparisons between the 3c5x9 driver and the safe driver.

5.2.2 Clay Types

This section discusses some of the types used in my driver implementation. They

are closely related to the state and configuration types mentioned in section 4. The

configuration types include configurations for command and register IO operations

as well as a configuration to set the base IO address.

type0 BaseConf [int Bus, int Low, int High] = native

type0 CmdConf [int C, int Wait, int Stats, int Busy] = native
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type0 PortConf [int Win, int Bytes, int Read, int Write,

int Port] = native

type0 RangedPortConf [int W, int B, int R, int T, int LowP,

int HighP] = native

These BaseConf type states that a given bus allows base IO addresses between Low

and High.

BaseConf[ISA_Base, 0x200, 0x3F0] isa;

My 3c509 driver uses an ISA bus and sets the base IO address using the above

configuration-type value.

Command operations come with an indication of the wait time they require and

whether they change statistics or make the adapter busy.

CmdConf[StartCoax_CMD,800,0,0,0] start_coax;

CmdConf[StatsEnable_CMD,0,StatsEnabled+1,0,0] stats_enable;

The above command configuration-types state that the start coax command needs

an 800 micro-second wait and the Statistics Enable command changes statistics to

enabled.

The configuration types for a register operation shows the necessary window, the

number of bytes to access, and the port for the register.

PortConf[1,2,1,0,RxStatus_REG] rx_status;

The RX status register is located in window 1, handles up to 2 word reads, and

doesn’t allow writes. RxStatus REG is defined to be 0x08. For ease of use, I split

the ranged port and single port configuration-type into two configuration types.

Only 2 registers actually use a range of ports and this move shortened the type

information checked at each IO interface for the other register operations.

The state types track the various states of the adapter.

@type0 BaseState [int Device, int Base] = native

@type0 BusyState [int Device, int Busy] = native
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@type0 StatsState [int Device, int Stats] = native

@type0 QState [int Device, int Queue, int Space] = native

@type0 WinState [int Device, int Win] = native

The driver uses one of each state type (and one state type for each FIFO queue).

@type0 DevStateS

[int This, int W, int B, int D, int S, int T, int R] = struct {

WinState [This, W] window;

BaseState [This, B] io_addr_base;

BusyState [This, D] busy;

StatsState [This, S] statistics;

QState [This, TX_FREE, T] tx_free;

QState [This, RX_USED, R] rx_used;

}

When the driver enters a function (e.g. transmit), it does not know the current values

of these states and must gather them before Clay will let it perform operations which

depend on them. This is accomplished through reading a stored base address and a

status register read operation. Together, they set the current window, base address,

and adapter busy state. The QStates are set as needed by TX and RX status

operations. The statistics state is set by enabling or disabling statistics.

Certain registers such as the status register require a unique IO interface so I

didn’t give them a port configuration-type and instead wrote an IO function which

only uses their port offset.

native exists [u1 B2, u16 V, u3 W2]

@[Int[V], Int[W2], Int[B2], WinState[D,W2],

BaseState[D,A], BusyState[D,B2]]

el3_inwStatus

[u32 D, u32 A, int B1, int W1]
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(Int[A] addr,

WinState[D,W1] win, BaseState[D,A] base, BusyState[D,B1] busy);

The above function header shows the interface to the status register. The only

incoming requirement is that the base address is the stored one. The status register

returns two bytes of data (Int[V ] where V is the complete status data). Among

the data bits are the current window (Int[W2], the window bits) and the busy state

of the adapter (Int[B2], the busy bit). The status function returns these and then

updates state-type values so that further IO operations are possible.

5.2.3 Prevented Violations

My implementation of the 3c509 driver prevents several categories of errors assuming

the function input invariants are not violated.

• Two driver functions will never hold the device data structure lock at once or

interleave their reads and writes to the adapter.

• The driver will never read a register in the wrong window.

• The driver will not read or write more bytes than a register allows.

• The driver will read only the adapter status register while the adapter is busy.

• The driver will not read more data from the receive FIFO than it contains.

• The driver will not overflow the buffer it places a received packet in.

• The driver will only send a packet to the adapter if there is room in the transmit

FIFO.

• The driver will not under-write or over-write its device data structure.

This list of prevented errors includes all the abstraction invariants from section 4.

In particular, the third point means that the following scenario happens safely: One

thread is in the interrupt function when another interrupt is generated. The first

thread holds the device data structure lock. The second interrupt thread will wait
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for the lock while the first proceeds. The lock mean that two interrupt threads will

not be able to process 3c509 interrupts at the same time.

Clay guarantees the specification matches the implementation. There may still

be specification bugs. If the specification is correct, a badly written driver may not

send or receive any packets but it will not be able to overrun or underrun the FIFO

queues, cause memory errors, mishandle shared data structures.

5.3 A Toy Operating System

To show the practical application of the additions to Clay’s abstract syntax described

in Section 3, I used the additions to re-write portions of a toy operating system. The

toy OS, Shale, is a kernel built using parts from the Flux OSKit [9] developed at

the University of Utah. Shale is similar to Linux although much smaller to make it

manageable for research purposes.

5.3.1 The OSKit

The Flux OSKit [9] was designed to make operating system building and interactions

on an x86 architecture much simpler. It consists of libraries written in C which handle

all of the standard tasks an operating system or interface to one might need. Using

the OSKit, the “hello world” OS requires less than 20 lines of additional code.

Several systems have been written using the OSKit including the Fluke OS and

ported versions of ML, SR, and Java [9].

• The Fluke OS was built using the OSKit and consists mostly of OSKit code,

drastically cutting down on the code that needed to be specifically written for

the OS.

• ML/OS is a version of SML/NJ ported to run on a PC. Using the OSKit, a

small team of masters and undergraduate students completed the project in a
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few months. The libraries in the OSKit took care of the x86 low level details

so that most of the time was spent understanding the details of SML.

• SR/OS is a port of SR from Unix to a more platform-neutral version. It was

accomplished by a graduate student in a matter of weeks.

• Java/PC is similar to Sun’s JavaOS but took significantly less time to build; a

few weeks of work by a graduate student.

The Flux OSKit allows operating systems to be created very quickly by providing

functions for basic OS tasks. The functions used in these tasks can be rewritten or

replaced to create a specific operating system.

5.3.2 Functionality

Shale, the toy OS, is written in C, assembly, and Clay using pieces of the OSKit.

The OS uses the memory interface, networking, interrupt, thread, and driver support

sections of the OSKit. It runs three kernel level applications: arp, ping, and a firewall.

Shale uses standard linux device drivers including the 3Com 3c509 network adapter

described in Section 4. The OS takes advantage of the OSKit’s thread support to run

multi-threaded using a round robin scheduler. All threads have the same priority.

The arp and ping applications behave like their standard Unix counterparts.

They send out data packets and report the responses they get. The operating system

can also respond to arp and ping requests sent from other machines on the internal

or external network.

The firewall separates an internal network from an external one and expects

two Ethernet connections, one to the internal network and one to the external.

In protecting the internal network, the firewall allows only specified packet types

to travel between the internal and external networks. Either network can arp or

ping the firewall and vice versa. Currently only HTTP packets are allowed to cross

between networks. A standard firewall might allow ssh and sftp but disallow telnet
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and ftp. This firewall uses IP masquerading to hide the IP address of machines

on the internal network. Packets sent through to the external network show the

firewall machine’s IP address regardless of which internal machine sent the packet.

Arp allows the firewall to support IP routing and masquerading.

The interrupt code spawns a new thread for certain interrupts including those

from the 3c509. This prevents a deadlock possibility: One thread calls the transmit

function and acquires the device data structure lock. While it is in the transmit

function, the adapter receives a packet and generates an interrupt. The interrupt

code then spawns a new thread calling the 3c509 interrupt function. The interrupt

thread needs to acquire the device data structure lock so it will block until the

transmit thread releases the lock. Interrupts are only disabled long enough to spawn

a new interrupt thread so the transmit function will be able to proceed and will not

deadlock. If the interrupt did not spawn a new thread and left the old interrupts

disabled, the process scheduler would not switch processes and the transmit thread

would never release its lock causing a deadlock situation.
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6 Measures of Success

A type-safe language for operating systems can be judged by several measures. The

first concerns how safe the language actually is. What errors can it prevent? The

second concern is how much complicated information must be added to the code

to achieve the safety. The third measure is how well code sections written in the

language work with legacy code sections and whether the legacy code can be au-

tomatically translated into the type-safe language. Does it play well with legacy

code? The fifth measure is how easy the language is to use. Does it take longer

than expected to write int eh language? Can other programmers read your code?

The fifth measure is whether the type-safe code is slower than a legacy version of

the same code. The fifth measure concerns how extensible the language is. Will the

safety features of this language be enough for other applications? I performed some

stress tests on the adapter to check its behavior under large loads and found that it

ran safely as specified in the Clay implementation.

6.1 Safety

Clay was already able to prevent aliasing errors, buffer overflows, null pointer deref-

erences and many other errors. My research prevents some lock problems and en-

ables better abstraction enforcement through special types. The abstract syntax and

matching Clay implementation of locks can prevent the “forget to acquire” errors.

Clay should be able to catch the “forget to release” problem at the end of function

calls. That leaves the “re-entrant locks” problem unsolved by Clay’s implementation

or the lock abstract syntax. State and configuration types are extensions of concepts

already present in my abstract machine. State types allow code to track operating

system without impacting run-time. Configuration types enable the programmer to

add invariants from abstractions directly to the code. By checking state-type values
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against the configuration-type values in function headers, the program guarantees

that the encoded abstractions are being enforced.

6.2 Additions To Code

In order to implement the abstractions required by the device driver, a significant

amount of type information was added to the function headers and several IO func-

tions had to be duplicated to easily handle different calling invariants. Relatively

little had to be done to the actual function calls other than small syntax changes

(adding “let”) and passing or returning state and configuration-type values in the

functions calls. As intended, most of the safety burden is on the few function headers

rather than the many function calls. The extra type information ballooned the 3c509

code from 945 lines to over 4000 lines of code.

6.3 Legacy Code Interaction

Interactions between Clay and C++ are simpler than those between Clay and C.

Function calls from Clay to C++ require a header declaration with a native marker

in the Clay code and wrapper functions to coerce the types output by Clay to those

expected by the legacy C++ code. The Shale operating system is written in C

and the interface between Clay and C requires extern “C” statements and wrapper

functions. It is difficult to pass function pointers between C and Clay since Clay

expects a more exact argument type.

6.4 Ease of Use

Clay is not an easy language to use. Some of the syntax differences between C and

Clay are subtle but important in the types they produce (e.g. int x = 3; vs let x =

3;). Writing Clay code with driver specifications includes time spent turning notes
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on the specification into mathematical comparisons (e.g. “The index is legal for the

array bounds” becomes [int N, type T, int I; 0 <= I && I < N ] for an array of type

Array[N, T ] and an index of type Int[I]). From personal experience understanding

uncommented Clay code is often very difficult. An informal survey of C programmers

indicated than the format of commented Clay code was readable but the types

were indecipherable without an explanation. Clay programmers who understood the

format and possibilities of Clay types should have less problem reading Clay code.

I have both ported some code from Clay to C (the driver) and written some code

directly in Clay (the lock code). In order to port the driver to Clay, I throughly

read the 3c509 manual and took notes on the specification it described. These notes

are presented in section 4.0.1. I also took notes on any specification implied by the

code and comments of Donald Becker’s 3c5x9 driver. Using my notes on the adapter

functionality, I created state types for all of the states the driver might need. This

included the “adapter busy” state and the port access configurations. Some of these

types are static and will not change as the driver runs. These types became the

nonlinear configuration types.

The driver consists mainly of memory operations on the shared data and IO

operations on the adapter. The memory operations were ported using Mems and

the load and store operations. Since the shared data structure consists of integers,

shorts, characters, arrays, and pointers, I created several different types of Mems

for each size and type of data. Each type of Mem needed its own set of load and

store interfaces. Donald Becker’s driver uses six assembly IO calls. I split these into

several different interfaces for the status checks, packet data accesses, commands,

and general IO operations. The interfaces for the commands were then split into

interfaces which changed various adapter states and generic command interfaces. All

total, the six assembly calls from C became about 20 wrapped assembly interfaces in

Clay. In order to share both the data structure and access to the adapter, I created a
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structure of all the adapter Mems and the state-type and configuration-type values.

The overall structure was linear and size 0 so it could be acquired from a lock. I

added one integer to the end of the actual shared data structure for the lock bit.

All code which uses this data structure assumes it has size sizeof(struct device) so

adding an integer to the end of the structure should not cause problems elsewhere.

The next step was to port the 3c509 portions of the 3c5x9 driver line by line. I

had to re-arrange some code sections in order to use the functional style required

by linear types. Conditional statements, for instance, require that the validity of a

linear value be the same before and after the statement, so all branches must leave

the linear with the same validity. When the driver was written, I moved on to type

checking and fixing mismatches between the specification and implementation. Most

of the mismatches involved typographical errors and dropped linears.

Porting the 3c509 driver to Clay took longer than it likely took to write the

original C driver. Once the code type checked, it ran with only one error. The

error was an incorrect data structure offset and was fixed within a few hours of

discovering it. In this case, it was a specification error (my C-to-Clay interface

specified the wrong data offset).

About half the porting time was spent writing a specification in mathematical

terms. This included describing all of the IO interfaces with arithmetic constraints

and integer type-parameters. The other half of the time was spent directly translat-

ing C syntax to Clay syntax. Because Clay implements abstractions not specifically

mentioned in C code, it is not possible to automatically translate all C to Clay and

produce a safe operating system that follows all the OS safety abstractions. However,

it would be possible to translate some C syntax to Clay syntax and add obvious type

information. This would speed up translation of operating system sections. Such a

translator does not currently exist but it could be a future project. The remainder

of the porting time was divided between creating my specification from the 3c509
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Figure 23: Network setup of my operating system and the 3c509 adapter

manual and tracking down invalid linear values.

Unlike porting C code to Clay, implementing locks in Clay did not take much

longer than implementing them in C. The lock specification in the abstract syntax

ported swiftly and easily to Clay.

6.5 Speed

I tested the ping program on 4 different versions of the operating system. All versions

run multi-threaded but some do not spawn a new thread for 3c509 interrupts. The

four versions are:

1. C 3c509 driver and same-thread 3c509 interrupts.

2. Clay 3c509 driver and same-thread 3c509 interrupts.

3. C 3c509 driver and spawned 3c509 interrupts.

4. Clay 3c509 driver and spawned 3c509 interrupts.

Figure 23 shows the setup of my testing network. Computer B runs the Shale

operating system and one 3c509 adapter. Computers A and C are connected only

through computer B. Computer C is protected by Shale’s firewall and IP mas-

querading so all access to C must originate from B or C.
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Pings
B to A B to C C to B C to A

1 C driver 1.387 ms 1.605 ms .528 ms .371 ms
2 Clay driver 1.387 ms 1.649 ms .391 ms .567 ms
3 C driver, spawn 1.399 ms 1.880 ms 5.42 ms 6.73 ms
4 Clay driver, spawn 2.118 ms 1.389 ms 4.4 ms 3.6 ms

Table 1: Timing test ping results.

For each version of Shale I ran 4 sets of 10 pings. The pings tested the connections

from B to A and C and from C to A and B. The connection from B to A is a control

since it does not involve the 3c509 adapter. For each set of 10 pings, I recorded the

quickest round trip time. I also recorded the slowest trip time but this information

is less useful because external factors could slow down a ping packet immeasurably

while factors inside Shale and the adapters limit the fastest possible round trip time.

Table 1 shows the fastest round trip ping packets between each computer using

the different versions of Shale. All trip times are in milliseconds. The versions of

Shale that spawn a new thread for each 3c509 interrupt are noticeably slower than

the versions which do not spawn on interrupt. The difference between round trips

with the C and Clay 3c509 drivers is negligible by comparison.

The Clay implementation of the 3c509 required several extra IO operations per

function and eliminated several run-time bounds checks. The extra IO operations

verified the current state-type values. In practice, these values are the expected

values so this approach erred on the side of caution. Therefore is it not unexpected

that the C and Clay versions of the 3c509 driver have similar trip times. The bounds

checks on data input from C code could also be eliminated if the rest of Shale was

written in Clay, further speeding up the Clay 3c509 driver.

The obvious conclusion is that spawning a new thread comes with substantial

overhead but a Clay implementation on its own does not. The Clay 3c509 driver
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on a non-spawning Shale can become deadlocked if a 3c509 interrupt comes in while

a packet is being sent. The packet function holds the data structure lock and the

interrupt function will block forever to acquire it. A compromise between always

spawning a thread on a 3c509 interrupt and never spawning one is to test the data

structure lock and only spawn a thread if the lock was already held. This way, a Clay

3c509 interrupt only spawns a new thread when it could otherwise cause deadlock.

6.6 Stress Tests

Although Clay theoretically prevents many errors, stress testing shows that the sys-

tem does not exhibit these errors under harsh conditions. I ran 2 types of stress tests

on the Clay 3c509 driver.

The first test spawned 18 threads on computer B. Each thread sent 3 ping re-

quests to computer C. Each interrupt generated by ping response packets spawned

another thread. This meant that a total of 54 threads were spawned. Any ping

request packets which did not fit into the transmit FIFO queue were dropped and

not transmitted. The read and write operations (ping request and ping response) be-

came interleaved as the process scheduler cycled through all the processes. The ping

packets sent out data varying in size from 32 to 828 bytes per packet. The threads

shared the driver data structure and did not cause adapter failure. No packets were

dropped.

The second test spawned 18 threads, again on computer B. Each thread sent

10 ping requests to computer C. The rest of the setup was the same as in the first

test. Three packets were not transmitted as a result of a full transmit FIFO. The

average round trip time per packet was about 10 times longer than packets sent

singly without all the other threads running simultaneously. This test was repeated

with 15 ping requests per thread and the number of dropped packets went up to 27.

Several ping response packets were received during the same interrupt.

97



Overall, the adapter behaved as it is intended to under extreme load.

6.7 Extending this approach

My approach provides safety for locks, shared memory and system state, and IO

operations. It should easily apply to other operating system drivers which use the

above features. Its system-state tracking ability is limited to state which can be

expressed by boolean or integer arguments. State requiring more complex expression

methods would need a different form of state type. The configuration types are also

limited to integer and boolean arguments. At this time I have not seen any OS code

which would require such complex state or configuration types but I would not rule

out the possibility. Most drivers communicate with their device through some kind

of channel (IO calls or some other channel). The interfaces to the 3c509 IO calls

should generalize to interfaces on other IO calls or other channels.

Some low-level devices use memory-mapped control registers. These memory

locations are not under the control of the stack and thus do not have Mems and

cannot be accessed by load and store operations. They would need their own ca-

pability type and access functions. This capability type would likely be similar to

the PortConfig configuration type used by my 3c509 driver. The ports to access

3c509 registers cannot be accessed as standard memory and and required they own

capability types and IO access functions.

This approach should scale well with a few limitations. If large segments of code

are written in Clay with function and type specifications then each function can make

more assumptions about its inputs and fewer run-time checks will be necessary (For

instance, I currently make a run-time check for null data structure pointers on the

boundary of C OS code and Clay driver code. If more OS code was written in Clay,

these checks could be eliminated). On the downside, some linear values including

interrupt state would be used all over a multi-threaded OS written in Clay. Without
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global values, most functions would need to take and return this value. This problem

could be solved by a form of global storage which preserved linear access but acted

like a global.
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7 Related Work

Related work on better operating systems can be separated into three categories:

expressive type-safe languages, which use type systems to prevent safety bugs; cor-

rectness and safety proofs, which prove an operating system or application is free

of certain safety or implementation bugs; and automated debuggers, which help

programmers find safety and implementation bugs.

7.1 Expressive Type-Safe Languages

Type-safe languages strive to prevent bugs that cause safety violations such as data

sharing errors, buffer overflows, pointer aliasing errors, and memory leaks. The

languages mentioned below all prevent a subset of safety violations.

Vault The Vault programming language [7] is an extended form of C that embeds

resource management protocols in the source code’s types. The protocols prevent

dangling references, memory leaks, race conditions, and other errors that can occur

if operations on resources happen out of order. The type checker automatically

enforces all protocols at compile time.

Vault’s “type guards” provide a way to specify protocols for temporal events.

The protocols can specify that events occur in a certain order, which operations

must occur before a data object is accessed, and that an operation must eventually

occur. For example, the type guard on a pointer might specify that the pointer must

be non-NULL before it is dereferenced.

There are several commands that can be used with a guard:

• Create a guard and a set of values

• Associate a guard with a variable

• Check the value of the guard

• Set the value of the guard
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• Add its flag to a global set of accessible guards

• Remove its flag from the set

A guarded value can only be accessed if its flag is in the global set and the guard

value matches given conditions. For example, a guarded pointer is created with a

guard value of NULL. When the pointer is set, the guard value changes to non-

NULL. Later the pointer can only be dereferenced if its flag is in the global set and

the guard value is non-NULL.

Flags can be removed from the global set to grant exclusive access to the guarded

resource. When exclusive access is no longer needed, the flag can be added to the

global set again. Flag removal and replacement provide a compile-time solution to

some aliasing problems that would otherwise require expensive reference counting.

Additional type information needed for the guards is used all over Vault programs

but is brief in each location. Like Clay, Vault provides compile-time safety checks.

Cyclone The Cyclone programming language [17, 15] is another extended form of

C which adds types to guarantee conditions about pointers and arrays and inserts run

time checks where needed if no compile time check is present. Additionally, Cyclone

adds support for convenient programing features including parametric polymorphism

and pattern matching.

Cyclone provides safety guarantees about pointer usage. It prevents the cast of

an integer to a pointer because this would allow code to overwrite a random memory

location. It also disallows pointer arithmetic on a * pointer unless special types are

used which can guarantee the pointer won’t be incremented out of bounds. Cyclone

inserts a NULL check with every * pointer dereference unless a special type has been

used guaranteeing the pointer is non-NULL. Together, these features mean that a

Cyclone program cannot crash due to * pointer errors.

Cyclone has several special pointer types that lessen the number of run time

checks its compiler inserts into code. These include @fat, @notnull, and @zeroterm
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pointers. @fat pointers keep track of bounds information and allow pointer arith-

metic with compile time error checks. @notnull pointers must be initialized when

they are declared and can be dereferenced safely without a NULL check. @zeroterm

pointers are used with C style char * strings. This type indicates that the string is

terminated by a 0 and can be combined with the @fat and @notnull types. When an

@zerterm (and @fat) pointer is initialized, the length of the sequence is computed

once and saved and the array indices can be checked statically. These three pointer

types allow a Cyclone programmer to move most pointer related safety checks from

run time to compile time.

Cyclone provides support for programming features often seen in ML or Haskell

programs but missing from C. Some of these features, such as parametric polymor-

phism, allow Cyclone to type check several unsafe portions of C (involving void *).

Other features, such as pattern matching, permit a concise way to pull small parts

out of a larger object. This is achieved with Haskell style let declarations and with

more powerful switch statements. The added features make programming easier and

provide ways to safely port C code to Cyclone.

Overall, Cyclone provides a safer version of C with many checks done at compile

time. Missing safety checks are inserted by the compiler. Work is in progress on

an application to port C to Cyclone and on a safe lock system resembling Java’s

synchronized [15, 10] .

Modula-3 for Extensible Operating Systems Hsieh et al. [13] added support

for extensible operating systems to Modula-3. Operating system extensions need to

handle pointer casting to avoid unnecessary data copies and make calls to and from

untrusted code. Safe extensions can directly access system services via system calls

and system data via load and store operations. Writing these extensions in a type-

safe language avoids many costly address-space switches. This research is similar

to mine in that it studies the needs of an operating system component and moves
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costly run-time steps to compile-time.

Typed Assembly Language Typing information is often lost during program

compilation. Morrisett et al. [19, 18] created a type system for assembly language to

preserve type information from higher level languages. The TAL assembler can type-

check programs written in a type-safe language and compiled to TAL. With typed

assembly, only one type checker is needed to check programs written in a variety

of languages. TALx86 is a version of TAL for the Intel Pentium. When the TAL

papers were published, a type-safe version of C called popcorn and part of Scheme

could be compiled to TAL.

7.2 Correctness and Safety Proofs

The OS verification approach to safety is very accurate but every time a change or

addition is made to the OS, the previous proofs are no longer valid and the process

needs to be done all over again. For this reason, the correctness proofs for an OS

are often not re-done after the OS is extended or changed.

A verified OS Kernel Bevier [2] wrote a small (10 page) OS kernel (KIT) in

assembly language. He translated the machine code for the kernel to Boyer-Moore

logic and used the Boyer-Moore theorem prover to prove its correctness. During this

process, many bugs were discovered and fixed.

Despite its small size, the kernel implements several distributed communicating

processes and provides many now-verified services including process scheduling, CPU

time allocation, error handling, message passing, and an interface to asynchronous

devices.

Proof Carrying Code Some verification methods put the burden on the pro-

grammer. An example of this is the Proof Carrying Code (PCC) of Necula and

Lee [20]. To use PCC, the OS kernel defines a safety policy and makes it public.

Applications use the policy to provide binaries with a proof that the code obeys the
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policy and the kernel validates the proofs during compile time. Proof generation is

difficult and a new proof must be generated with each version of the application; but

an automated proof generator has recently been created for Java programs.

Safe Machine Code Sirer et al. [28] discovered the difficulty of keeping type

information when integrating one language with another. This can cause verification

problems when a program is written in several languages or code written in one

language is run on an OS written in another language. (e.g. Modula-3 code and C

code in Sirer’s SPIN operating system).

To avoid multi-language problems, Xu et al. [33] developed a method of safety

checking machine code that only requires some type information and linear con-

straints from the programmer. The safety checker takes the desired safety properties

of an OS and checks that the machine code obeys these properties. This method al-

lows code additions to a program or operating system to be written in any language.

Coalgebraic Class Specification Language Tews [26] translated the memory

management portion of the Fiasco microkernel into the Coalgebraic Class Specifica-

tion programming language and created a set of properties that should be true for

the chosen code portion. The translated code and properties were run through the

PVS theorem prover and the properties were verified or rejected. Tews states that

the project took 3 months and much more time would be required to verify a full OS

because there is no automated method of translating C++ (the language of Fiasco)

into a language accepted by PVS.

Currently, Tews et al. [27] are verifying the whole Fiasco microkernel (about

15,000 lines of code). When finished, this will be one of the first fully-verified real

operating systems.
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7.3 Automated Debuggers

Since there are so many types of debuggers, only two are mentioned here. Both

locate bugs on a large scale and are therefore suited for use on operating systems.

Bug Inference There are many debuggers currently available and significant

advances are being made towards new automated debugging methods that put little

burden on the programmer. One relatively recent advance is the heuristic bug checker

of Engler et al. [8]. This checker takes a few basic facts such as a dereferenced

pointer is non-NULL and a program and statically looks through the code to find

inconsistencies. It develops beliefs about the code without programmer input and

finds the points where beliefs are contradictory. If the code contains many points

where a lock is acquired and then released, the checker will develop the belief that

acquired locks are later released. If one lock is acquired twice in a row, this will

contradict the belief and the checker will report it as a possible error.

This debugging method is able to catch bugs that rarely manifest themselves

and are thus difficult to locate. However, bugs in actions that are taken only a few

times may not be caught unless the checker is specifically looking for them. Missed

bugs could include a pointer access followed by a Null check if few Null checks are

done. Other types of bugs including array bounds violations are completely out of

the range of this checker.

Engler et al. ran the bug inference system on the Linux and OpenBSD operating

systems and discovered hundreds of bugs, many of which have since been patched.

Their findings are published as Chou et al. [4]

Redundancy Checking Xi and Engler [32] recently showed that redundant code

operations correlate with errors and provided a tool to find such redundancy. Their

tool searches for idempotency errors (x = x, x/x, x‖x), redundant assignments

that are written but never read, code sections that can never run, and several other

error types. When testing it on Linux code, they found a few idempotency errors
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that could have devastating results. They also found over 2000 possible redundant

assignments; 129 of the 155 they inspected turned out to be real errors. The majority

of the dead-code errors inspected also turned out to be real errors. Their tool can

be used to find inconsistencies between the specification and implementation of a

program as well as logical inconsistencies in the control flow of a specification.
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8 Future Work

The main contributions of this research are concurrency and locks in an abstract syn-

tax with a proof of soundness, extended type concepts to better enforce abstractions,

and an implementation to show it actually works and provides safety guarantees to

a vulnerable system.

There are many directions for possible future work in this area of language theory.

The configuration types are used statically but there are no guarantees that their

types cannot be changed. Such changes cause unsafe code behavior. There are also

lock issues that the abstract machine does not handle. Looking at implementation

issues, Donald Becker’s 3c5x9 driver was written within the limits of C. A safe 3c509

driver written to follow the manual rather than an existing C driver might have fewer

errors and better speed if it was written to take advantage of Clay’s flexibility. A

safe operating system depends on more than just its drivers. Other safety-critical

system parts are likely to have needs not addressed by this research.

8.1 Static Configuration Types

The configuration type values needs by a network driver are all constant. The type

parameters do not change while the system is being run. Since functions that rely

on configuration types expect a given configuration type value to be static, changes

in a configuration type could cause unsafe behavior. Configuration types do not

currently have guarantees that they are static.

8.2 Re-writing Rather Than Porting The 3c509 Driver

Re-writing the 3c509 driver using the manual as a base rather than an existing driver

would have several benefits. Clay uses the syntax and rules of my abstract machine

to make many run-time safety checks possible at compile-time. A driver written to
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have as few run-time safety checks as possible is likely to be faster than the current

porting of the 3c5x9 driver to Clay. Errors propagated from driver to driver using

cut and paste techniques would also be eliminated.

8.3 Problems Remaining for Locks

The abstract syntax and rules of locks has moved some of the burden or correctness

from all uses of locks to the lock types and functions. A programmer using these

locks cannot produce ”forget to acquire” and ”release unheld lock” errors because

the type checker will catch them at compile time. This moves a large part of the

burden off of the numerous creation, acquiring, and releasing calls and onto the single

implementation of these functions.

The Clay compiler could catch ”forget to release” errors by noticing linear values

abandoned at the end of a code block. A better solution would allow the abstract

machine to catch these errors. This solution might involve checks on the current state

of a lock. While the ”re-entrant lock” problem can be solved by lock numbering,

there may be a better solution through types.

8.4 Improved Safer Locks

The native C functions are a continuing source of un-safety. The acquire and release

functions both currently call C functions and therefore contain chances for errors.

One way to limit the number of C functions that locks depend on is to rely on a

single swap function so that both acquire and release can use the same C function

to set the lock bit.
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8.5 Other Safety-critical OS Components

An operating system depends on the safety of many parts. These include interrupts,

the process scheduler, and inter-process communication. State and configuration

types may not handle all the needs of these safety-critical OS components. A safe

OS kernel would require further research into the needs of each important component.
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A Clay/Locks: Formal Definition

This section presents the complete syntax and rules for the abstract machine λconcurrent

which includes linear memory, concurrency support, and support for locks. λconcurrent

is a subset of λlow, described in [14], with additions for concurrency and locks and

a few corrections. It presents rules for evaluation of λconcurrentprograms along with

rules for type well-formedness and type checking. Since the Clay compiler strips

extraneous types from the code while compiling to C, this section also shows rules

for type erasure and subsequent untyped evaluation rules.

A.1 Abstract Syntax

This section defines the abstract syntax of λconcurrent. The letter x is used to indicate

a value variable, while α is used to indicate a type variable. As usual, we consider

expressions and types that differ only in bound variable names to be equivalent.

linearity

φ = non | lin

kinds

K =
φ

i | int

arithmetic

i = · · · | − 2 | − 1 | 0 | 1 | 2 | · · ·

b = true | false

I = α | i
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types

τ = τ1
φ

−→ τ2 | φ〈−→τ 〉 | I | ∀α : K.τ | ∃α : K.τ

| Int(I) | Mem(I, τ) | Lock(I, τ) | bool

expressions

e = i | b | x | e1 e2 | eτ | φ〈−→e 〉 | λx : τ
φ

−→ e | Λα : K.v | let 〈−→x 〉 = e1 in e2

| if e1 then e2 else e3 | pack[τ1, e] as∃α : K.τ2 | unpack α, x = e1 in e2

| load(eptr, eMem) | store(eptr, eMem, ev) | release(eLock, eptr, eresource)

| create lock(eptr, eMem, eresource) | acquire(eLock, eptr) | fix x : τ.v | fact | lock

values

v = i | b | Λα : K.v | pack[τ1, v] as∃α : K.τ2 | λx : τ
φ

−→ e | φ〈−→v 〉 | fact | lock

untyped expressions

d = i | b | x | d1 d2 | 〈
−→
d 〉 | λx −→ d | let 〈−→x 〉 = d1 in d2

| if d1 then d2 else d3 | fix x.u | load(dptr, dMem) | store(dptr, dMem, dv)

| create lock(dptr, dMem, dresource) | acquire(dLock, eptr) | release(dLock, dptr, dresource)

untyped values

u = i | b | λx −→ d | 〈−→u 〉

expressions for substitution

s = v | fix x : τ.v
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environments

M = {1 7→ v1, · · · , n 7→ vn}

R = {1 7→ 〈−→v1〉, · · · , n 7→ 〈−→vn〉}

C = Ψ; Θ; ∆; Γ

Ψ = {1 7→ τ1, · · · , n 7→ τn}

Θ = {1 7→ 〈−→τ1 〉, · · · , n 7→ 〈−→τn〉}

∆ = {α1 7→ K1, · · · , αn 7→ Kn}

Γ = {x1 7→ τ1 · · · , xn 7→ τn}

untyped environments

L = {1 7→ u1, · · · , n 7→ un}

judgments

∆ ` τ : K

C ` e : τ

Ψspare; Θ; C ` (R, M, e : τ)

(R, M, e) → (R′, M ′, e′)

abbreviations

let x = e1 in e2 , let 〈x〉 =lin 〈e1〉 in e2
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Notes on environments

We treat the environments Ψ, Θ, ∆, Γ as sets, so the order of elements does not

matter: {x1 7→ τ1, x2 7→ τ2} = {x2 7→ τ2, x1 7→ τ1}.

The environments Ψ, Θ, ∆, Γ must be well-formed functions (and the definitions

in this thesis apply only to well-formed functions):

(i 7→ τ1 ∈ Ψ) ∧ (i 7→ τ2 ∈ Ψ) ⇒ τ1 = τ2

(i 7→ 〈−→τ1 〉 ∈ Θ) ∧ (i 7→ 〈−→τ2 〉 ∈ Θ) ⇒ 〈−→τ1 〉 = 〈−→τ2 〉

(α 7→ K1 ∈ ∆) ∧ (α 7→ K2 ∈ ∆) ⇒ K1 = K2

(x 7→ τ1 ∈ Γ) ∧ (x 7→ τ2 ∈ Γ) ⇒ τ1 = τ2

For Ψ, Θ, ∆, Γ we use the usual function application notation:

Γ(x) = τ ⇔ x 7→ τ ∈ Γ.

Environment splitting

These definitions split environments into two parts, where linear elements must go

into exactly one of the parts:

Ψ = Ψ1, Ψ2 ⇔ (Ψ = Ψ1 ∪ Ψ2) ∧ (domain(Ψ1) ∪ domain(Ψ2) = ∅)

∆ ` Γ = Γ1, Γ2 ⇔ ∀x, τ. (∆ ` τ :
non

i ⇒ ((Γ(x) = τ) ⇔ (Γ1(x) = τ))

∧((Γ(x) = τ) ⇔ (Γ2(x) = τ)))

∧(∆ ` τ :
lin

i ⇒ ((Γ(x) = τ) ⇒ (Γ1(x) = τ)

xor(Γ2(x) = τ)))

∧(∆ ` τ :
lin

i ⇒ ((Γ(x) = τ) ⇐ (Γ1(x) = τ)

∨(Γ2(x) = τ)))

This defines how the entire set of enviromnents splits into two parts.

Ψ; Θ; ∆; Γ = (Ψ1; Θ; ∆; Γ1), (Ψ2; Θ; ∆; Γ2) ⇔ (Ψ = Ψ1, Ψ2) ∧ (∆ ` Γ = Γ1, Γ2)

Environment extension

These add new elements to environments:
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Ψ, i 7→ τ , Ψ ∪ {i 7→ τ}, where i 6∈ domain(Ψ)

Θ, i 7→ 〈−→τ 〉 , Θ ∪ {i 7→ 〈−→τ 〉}, where i 6∈ domain(Θ)

∆, α 7→ K , ∆ ∪ {α 7→ K}, where α 6∈ domain(∆)

Γ, x 7→ τ , Γ ∪ {x 7→ τ}, where x 6∈ domain(Γ)

(Ψ; Θ; ∆; Γ), i 7→ τ , (Ψ, i 7→ τ ; Θ; ∆; Γ),

(Ψ; Θ; ∆; Γ), i 7→ 〈−→τ 〉 , (Ψ; Θ, i 7→ 〈−→τ 〉; ∆; Γ),

(Ψ; Θ; ∆; Γ), α 7→ Kα , (Ψ; Θ; ∆, α 7→ Kα; Γ)

where α does not appear anywhere in (Ψ; Θ; ∆; Γ).

(Ψ; Θ; ∆; Γ), x 7→ τ , (Ψ; Θ; ∆; Γ, x 7→ τ),

where x does not appear anywhere in (Ψ; Θ; ∆; Γ) and ∆ ` τ :
φ

i.

Nonlinear environments

The non operator removes any linearity from an environment. We use it to prohibit

linearity in some of the type checking rules.
non

Γ (∆) , {x 7→ τ |(x 7→ τ ∈ Γ) ∧ (∆ ` τ :
non

i )}

If C = Ψ; Θ; ∆; Γ, then
non

C , ∅; Θ; ∆;
non

Γ (∆).

A.2 Evaluation Rules

Definitions

• (R1, M1, e1)
?
7→ (R2, M2, e2) means (R1, M1, e1) progresses in zero or one steps

to (R2, M2, e2).

• (R1, M1, e1)
∗
7→ (R2, M2, e2) means (R1, M1, e1) progresses in zero or more steps

to (R2, M2, e2).

• (R1, M1, e1)
+
7→ (R2, M2, e2) means (R1, M1, e1) progresses in one or more steps

to (R2, M2, e2).
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• (R1, M1, e1)
?,(evaluation−rule)

7→ (R2, M2, e2) means

(R1, M1, e1) progresses to (R2, M2, e2) by applying the given evaluation rule zero

or one times.

• (R1, M1, e1)
∗,(evaluation−rule)

7→ (R2, M2, e2) and

(R1, M1, e1)
+,(evaluation−rule)

7→ (R2, M2, e2) are defined in the same way as the

above definition.

Rules

R has been omitted from the evaluation rules which do not affect it. M has been

similarly omitted.

(E LOAD) (R, M, load(i, fact)) → (RM, lin 〈M(i), fact〉)

(E STORE) (R, M, store(i, fact, v)) → (R, [i 7→ v]M, fact)

(E CREATELOCK) (R, M, create lock(i, fact, vresource))

→ ([i 7→ 〈fact, vresource〉]R, M, lock)

(E ACQUIRE1) (R, M, acquire(lock, i))

→ ([i 7→ 〈fact〉]R, [i 7→ 1]M, vresource)

where R(i) = 〈fact, vresource〉 and M(i) = 0

(E ACQUIRE2) (R, M, acquire(lock, i)) → (R, M, acquire(lock, i))

where R(i) = 〈fact〉 and M(i) = 1

(E RELEASE1) (R, M, release(lock, i, vresource))

→ ([i 7→ 〈fact, vresource〉]R, [i 7→ 0]M, 〈〉)

where R(i) = 〈fact〉 and M(i) = 1
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(E RELEASE2) (R, M, release(lock, i, vresource))

→ ((R, M, release(lock, i, vresource)))

where R(i) = 〈fact, vresource〉 and M(i) = 0

(E ABSAPP ) (λx : τ
φ

−→ e1)v2 → [x 7→ v2]e1

(E TABSTAPP ) (Λα : K.v)τ → [α 7→ τ ]v

(E LET ) let 〈x1, · · · , xn〉 = φ〈v1, · · · , vn〉 in e → [x1 7→ v1, · · · , xn 7→ vn]e

(E IF1) if true then e1 else e2 → e1

(E IF2) if false then e1 else e2 → e2

(E UNPACK) unpack α, x = (pack[τ1, v1] as τ2)in e2 → [α 7→ τ1, x 7→ v1]e2

(E FIX) fix x : τ.v → [x 7→ fix x : τ.v]v

Rather than writing each of the congruence rules separately (
e2→e′2

v1 e2→v1 e′2
, etc.), we

use E to indicate an expression with one (shallowly dug) hole in it, and E[e] to

indicate the expression with the hole replaced by e, so that a single evaluation rule

covers all the cases. This is only for notational convenience.

E[e] = eτ | pack[τ1, e] as∃α : K.τ2 | unpack α, x = e in e2 | ee2 | v1e

| φ〈ei, · · · , ek−1, e, ek+1, · · · , en〉 | let 〈−→x 〉 = e in e2 | if e then e2 else e3

| load(e, eMem) | load(vptr, e)

| store(e, eMem, ev) | store(vptr, e, ev) | store(vptr, vMem, e)

| create lock(e, eMem, eresource) | create lock(vptr, e, eresource)
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| create lock(vptr, vMem, e) | acquire(e, eptr) | acquire(vLock, e)

| release(e, eptr, eresource) | release(vLock, e, eresource) | release(vLock, vptr, e)

(congruence rule)
(R, M, e) → (R′, M ′, e′)

(R, M, E[e]) → (R′, M ′, E[e′])

e → e′

(R, M, e) → (R, M, e′)

A.3 Type Well-formedness Rules

(K IV AR) ∆ ` i : int

(K TV AR) ∆, α : K ` α : K

(K BOOL) ∆ ` bool :
non

1

(K ALL)
∆, α : K ` τ :

φ

i

∆ ` ∀α : K.τ :
φ

i

(K SOME)
∆, α : K ` τ :

φ

i

∆ ` ∃α : K.τ :
φ

i

(K ABS)
∆ ` τ1 :

φ1

i1 ∆ ` τ2 :
φ2

i2

∆ ` τ1
φ

−→ τ2 :
φ

1

(K NLTUPLE)
∀j.(∆ ` τj :

non

ij )

∆ `non 〈−→τ 〉 :
non

i
where (i =

∑

j

ij)

(K LTUPLE)
∀j.(∆ ` τj :

φj

ij)

∆ `lin 〈−→τ 〉 :
lin

i

where (i =
∑

j

ij)

(K INT )
∆ ` I : int

∆ ` Int(I) :
non

1
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(K MEM)
∆ ` I : int ∆ ` τ :

non

1

∆ ` Mem(I, τ) :
lin

0

(K LOCK)
∆ ` I : int ∆ ` τ :

lin

0

∆ ` Lock(I, τ) :
non

0

Valid Lock States

(T FREE) Int(0); 〈τMem, τresource〉 ` 〈τMem, τresource〉

(T HELD) Int(1); 〈τMem, τresource〉 ` 〈τMem〉

A.4 Type Checking Rules

(T RMe)

Ψ = Ψspare, Ψe, ΨR1, · · · , ΨRn Ψe; Θ; ∆; Γ ` e : τ

∀i ∈ dom(Ψ).(∅; Θ; ∅; ∅ ` M(i) : Ψ(i))

∀i ∈ dom(Θ).(ΨRi; Θ; ∅; ∅ ` R(i) : τi and Ψ(i); Θ(i) ` τi)

Ψ; Θ; ∆; Γ ` (R, M, e : τ)

(T V AR)
non

C , x : τ ` x : τ

(T FACT )
non

C , I 7→ τ ` fact : Mem(I, τ)

(T LOCK) ∅; Θ, I 7→ 〈Mem(I, Int(J)), τ2〉; ∆;
non

Γ ` lock : Lock(I, τ2)

where J = 0 or J = 1

(T BOOL)
non

C ` b : bool

(T INT )
non

C ` i : Int(i)

(T LOAD)
C1 ` eptr : Int(I) C2 ` eMem : Mem(I, τ)

C1, C2 ` load(eptr, eMem) :lin 〈τ, Mem(I, τ)〉

(T STORE)

C2 ` eMem : Mem(I, τ1) C3 ` ev : τ2

C1 ` eptr : Int(I) C1, C2, C3 ` τ2 :
non

1

C1, C2, C3 ` store(eptr, eMem, ev) : Mem(I, τ2)
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(T TABS)
C, α : K ` v : τ

C ` Λα : K.v : ∀α : K.τ

(T TAPP )
C ` e : ∀α : K.τ1 C ` τ2 : K

C ` eτ2 : [α 7→ τ2]τ1

(T TUPLE)

C =
non

C , C1, · · · , Cn

∀i.(Ci ` ei : τi) C ` φ〈−→τ 〉 : K

C ` φ〈−→e 〉 : φ〈−→τ 〉

(T ABS)
∆ ` τ1 : K

φ

Ψ; Θ; ∆;
φ

Γ, x : τ1 ` e : τ2

φ

Ψ; Θ; ∆;
φ

Γ` λx : τ1
φ

−→ e : τ1
φ

−→ τ2

(T APP )

C1, C2 = Ψ; Θ; ∆; Γ

C1 ` e1 : τa
φ

−→ τb C2 ` e2 : τa

C1, C2 ` e1e2 : τb

(T LET )
Ca ` ea : 〈−→τ 〉 Cb,

−−→x : τ ` eb : τb

Ca, Cb ` let〈−→x 〉 = ea in eb : τb

(T FIX)
C ` τ :

φ

i C, x : τ ` v : τ

C ` (fix x : τ.v) : τ

(T PACK)

C ` τ1 : K C ` ∃α : K.τ2 :
φ

i

C ` e : [α 7→ τ1]τ2

C ` pack[τ1, e] as∃α : K.τ2 : ∃α : K.τ2

(T UNPACK)

C1 ` e1 : ∃α : K.τ1

C2, α : K, x : τ1 ` e2 : τ2

C1, C2 ` unpack α, x = e1 in e2 : τ2

(T IF )
Ca ` e1 : bool Cb ` e2 : τ Cb ` e3 : τ

Ca, Cb ` if e1 then e2 else e3 : τ

(T CREATELOCK)

C1 ` eptr : Int(I) C2 ` eMem : Mem(I, Int(0))

C3 ` eresource : τ :
lin

0

C1, C2, C3 ` create lock(eptr, eMem, eresource) : Lock(I, τ)
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(T ACQUIRE)
C ` eLock : Lock(I, τ) eptr : Int(I)

C ` acquire(eLock, eptr) : τ

(T RELEASE)
C1 ` eLock : Lock(I, τ) eptr : Int(I) C2 ` eresource : τ

C1, C2 ` release(eLock, eptr, eresource) :non 〈〉

A.5 Type Erasure Rules

The erasure rules are defined only for well-typed terms: to erase types, we require a

derivation of some judgment C ` (R, M, e : τ) to be given, and we use the derivation

to annotate subexpressions inside (R, M, e) with types. Specifically, if e = ...e1...,

and the derivation of C ` (R, M, e : τ) contains the judgment C1 ` e1 : τ1, then we

annotate e with τ1 as e = ...(e1 : τ1)... when convenient. We annotate types with

kinds in a similar fashion. These annotations guide the erasure rules.

(ER RMe) erase((R, M, e)) = ( erase(M), erase(e))

(ER M) erase(M) = {1 7→ erase(v1), · · · , n 7→ erase(vn)}

(ER i) erase(i) = i

(ER b) erase(b) = b

(ER x) erase(x) = x

(ER APP ) erase(e1 e2) = erase(e1) erase(e2)

(ER APPT ) erase(e τ) = erase(e)

(ER TUPLE) erase(φ〈e1, . . . , en〉) = 〈 erase(e1), . . . , erase(en)〉

(ER FUN) λx : τ
φ

−→ e = λx −→ erase(e)

(ER TFUN) erase(Λα : K.v) = erase(v)

(ER LET ) erase(let 〈−→x 〉 = e1 in e2) = let 〈−→x 〉 = erase(e1) in erase(e2)
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(ER IF ) erase(if e1 then e2 else e3) = if erase(e1) then erase(e2) else erase(e3)

(ER PACK) erase(pack[τ1, e] as∃α : K.τ2) = erase(e)

(ER UNPACK) erase(unpack α, x = e1 in e2) = let x = erase(e1) in erase(e2)

(ER FIX) erase(fix x : t :
φ

i .v) = fix x. erase(v) where i > 0

(ER FIX0) erase(fix x : t :
φ

0 .v) = 〈〉

(ER FACT ) erase(fact) = 〈〉

(ER LOAD) erase(load(eptr, eMem)) = load( erase(eptr), erase(eMem))

(ER STORE) erase(store(eptr, eMem, ev))

= store( erase(eptr), erase(eMem), erase(ev))

(ER LOCK) erase(lock) = 〈〉

(ER CREATELOCK) erase(create lock(eptr, eMem, eresource))

= create lock( erase(eptr), erase(eMem), erase(eresource))

(ER ACQUIRE) erase(acquire(eLock, eptr)) = acquire( erase(eLock), erase(eptr))

(ER RELEASE) erase(release(eLock, eptr, eresource))

= release( erase(eLock), erase(eptr), erase(eresource))

A.6 Untyped Evaluation Rules

Some of the evaluation rules will work for both typed and untyped evaluation. These

new rules apply to untyped evaluation when the standard evaluation rules cannot.

(D LOAD) (L, load(i, 〈〉)) → (L, 〈L(i), 〈〉〉)

(D STORE) (L, store(i, 〈〉, u)) → ([i 7→ u]L, 〈〉)
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(D ABSAPP ) (λx −→ d1)u2 → [x 7→ u2]d1

(D FIX) fix x.u → [x 7→ fix x.u]u

(D CREATELOCK) (L, create lock(i, 〈〉, 〈〉)) → (L, 〈〉) where L(i) = 0

(D ACQUIRE1) (L, acquire(〈〉, i)) → ([i 7→ 1]L, 〈〉) where L(i) = 0

(D ACQUIRE2) (L, acquire(〈〉, i)) → (L, acquire(〈〉, i)) where L(i) = 1

(D RELEASE1) (L, release(〈〉, i, 〈〉)) → ([i 7→ 0]L, 〈〉) where L(i) = 1

(D RELEASE2) (L, release(〈〉, i, 〈〉)) → (L, release(〈〉, i, 〈〉)) where L(i) = 0

B Clay/Locks: Soundness Proof

This section provides a proof of soundness (type safety) for λconcurrent. Soundness

means that well-typed programs will never get stuck. The proof consists of a proof of

preservation and a proof of progress, in the syntactic style of [30] (also see [22] for an

general introduction to syntactic approaches to semantics and types). Preservation

says that a well-typed program steps to another well-typed program. Progress says

that a well-typed program can always step unless it is in an acknowledged end state,

a value. This chapter also presents a proof that the extraneous types can be erased

without upsetting the run-time behavior. Supporting lemmas stated here without

proof are proven in [14].

Formally stated, the theorems proved here are:

Preservation: If Ψe; Θ; ∆; Γ ` e : τ and Ψspare, Ψe; Θ; ∆; Γ ` (R, M, e : τ)

and (R, M, e) → (R′, M ′, e′), then Ψ′
e; Θ

′
e; ∆; Γ ` e′ : τ and Ψspare, Ψ

′
e; Θ

′; ∆; Γ `

(R′, M ′, e′ : τ).
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Progress: If (R, M, e) is closed and well-typed (C ` (R, M, e : τ) for some τ and

C = Ψ; Θ; ∅; ∅), then either e is a value or else there is some (R′, M ′, e′) so that

(R, M, e) → (R′, M ′, e′).

Erasure: If (R, M, e) is closed and well-typed (C ` (R, M, e : τ) for some τ and

C = Ψ; Θ; ∅; ∅) then the following hold:

1. If (R, M, e) → (R′, M ′, e′) then erase((R, M, e))
?
→ erase((R′, M ′, e′)).

2. If erase((R, M, e)) → (L′, d′), then (R, M, e)
+
→ (R′, M ′, e′) and

erase((R′, M ′, e′)) = (L′, d′).

3. If erase(e) is a value, then erase((R′, M ′, e′)) = (L′, d′) and erase((R, M, e)) =

erase((R, M, v)).

B.1 Preservation Lemmas

LEMMA [WEAKENING FOR TERMS]

(C1 ⊆ C2) ∧ (C1 ` e : τ) ⇒ (C2 ` e : τ).

LEMMA [WEAKENING FOR TYPES]

(C1 ⊆ C2) ∧ (C1 ` τ : K) ⇒ (C2, C3 ` τ : K).

LEMMA [SPLIT SUBSET]

If C = C1, C2 and C1

non
⊆ C ′

1, then there is some C ′
2 such that C2

lin
⊆ C ′

2 and C1, C2

non
⊆

C ′
1, C

′
2.

If C = C1, C2 and C1

non

⊆ C ′
1, then there is some C ′

2 such that C2 ⊆ C ′
2 and

C1, C2

non

⊆ C ′
1, C

′
2.
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LEMMA [TYPE SUBSTITUTION]

If C,
−−−−→
α : Kα ` τ : K, and C ` ταi

: Kαi
, then C ` [−−−−→α 7→ τα]τ : K.

(Corollary, via the type environment substitution lemma: if C,
−−−−→
α : Kα ` τ : K,

and C ` ταi
: Kαi

, then [−−−−→α 7→ τα]C ` [−−−−→α 7→ τα]τ : K.)

LEMMA [TERM SUBSTITUTION]

If we make the following definitions and assumptions:

• We define a substitution [s] = [−−−−→α 7→ τα,−−−−→x 7→ sx,
−−−−→y 7→ sy,

−−−−→z 7→ sz]

• C = Ψ; Θ; ∆; Γ

• No αi appears free in Ψ; Θ; ∆ (note: typically, this condition can be satisfied

by alpha-renaming αi before invoking this lemma).

• [−−−−→α 7→ τα]C = Ψ; Θ; ∆; [−−−−→α 7→ τα]Γ is syntactically well-formed (this assumption

is needed because substitutions of non-integers into integers I does not always

produce integers).

• C,
−−−−→
α : Kα,−−−→x : τx,

−−−→y : τy ` e : τ

• zi /∈ domain(Γ)

• [−−−−→α 7→ τα]
non

C ` sxi
: [−−−−→α 7→ τα]τxi

(where τxi
are nonlinear types)

• [−−−−→α 7→ τα](
non

C , Cyi
) ` syi

: [−−−−→α 7→ τα]τyi
(where τyi

are linear types)

• [−−−−→α 7→ τα](
non

C , Czi
) ` szi

: [−−−−→α 7→ τα]τzi
(where τzi

are linear types)

• C ` ταi
: Kαi

then we can conclude the following:

• [−−−−→α 7→ τα](C,
−→
Cyi

) ` [s]e : [−−−−→α 7→ τα]τ
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Context abreviations

Some abreviations used in the preservation proof:

Ce = Ψe; Θe; ∆; Γ

C = Ψspare, Ψe; Θ; ∆; Γ

C ′
e = Ψ′

e; Θ
′
e; ∆; Γ

C ′ = Ψspare, Ψ
′
e; Θ

′; ∆; Γ

LEMMA [FINAL-STEP]

This lemma is the last step common to all cases of the preservation proof. In all

proofs where R’ and M’ are well typed, ∀i ∈ dom(Ψ).(C∅ ` M ′(i) : Ψ(i)), ∀i ∈

dom(Θ).(C∅ ` Θ(i) = 〈τMem, τresource〉).M(i) : Int(0) or M(i) : Int((1)) If M(i) :

Int(0), then R(i) : 〈τMem, τresource〉. If M(i) : Int(1), then R(i) : 〈τMem〉. C ′
e ` e′ :

τ so by (T RMe), C ′ ` (R′, M ′, e′ : τ).

B.2 Proof of Preservation

If Ψe; Θ; ∆; Γ ` e : τ , Ψspare, Ψe; Θ; ∆; Γ ` (R, M, e : τ) and (R, M, e) → (R′, M ′, e′),

then Ψ′
e; Θ

′; ∆; Γ ` e′ : τ and Ψspare, Ψ
′
e; Θ

′; ∆; Γ ` (R′, M ′, e′ : τ).

Prove by induction on the type derivation. The cases below omit most of the

congruence rule cases, because the proofs for these all look more or less alike. See

the load, store, and createlock cases for examples of the proofs for congruence rule

cases.

1. Case (T LOAD): C ` (R, M, e : τ) and Ce ` e : τ = Cptr, CMem `

load(eptr, eMem) : lin〈τ1, Mem(I, τ1)〉 where Cptr = ∅; ∅; ∆;
non

Γ eptr
` eptr : Int(I)

and CMem = {I 7→ τ1}; ∅; ∆;
non

Γ eMem
` eMem : Mem(I, τ1). The evaluation rules

that let e → e′ are (E LOAD) and the congruence rules for load.

Using (E LOAD), Cptr ` i : Int(I), CMem ` fact : Mem(I, τ1), and
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(R′, M ′, e′) = (R, M, lin〈M(i), fact〉). By Weakening for Terms Ce = Cptr, CMem

and CMem ⊆ Ce and CMem ` fact : Mem(I, τ1) so Ce = {I 7→ τ1}; ∅; ∆; Γ `

fact : Mem(I, τ1). Since M is well typed, Ce ` M(i) : Ψe(i) so Ce `

M(i) : τ1. Ψe and Θ are unchanged by (E LOAD) so C ′
e ` lin〈M(i), fact〉 :

lin〈τ1, Mem(I, τ1)〉 so C ′
e ` e′ : τ . R and M are unchanged so (FINAL-STEP)

applies and C ′ ` (R′, M ′, e′ : τ).

Using (congruence rule)E[e] = load(e, eMem), (R, M, eptr) → (R′, M ′, e′ptr).

Since Cptr = ∅; ∅; ∆; Γeptr
` eptr : Int(I), Ψspare; Θ; ∆; Γeptr

` (R, M, eptr :

Int(I)). By induction, C ′
ptr = Ψ′

eptr
; Θ′; ∆; Γeptr

` e′ptr : Int(I) and

Ψ′
spare, Ψ

′
eptr

; Θ′; ∆; Γeptr
` (R′, M ′, e′ptr : Int(I)). Since C = Cptr, CMem, and

Cptr ⊆ C ′
ptr, by the split subset lemma, there is a C ′

Mem such that CMem ⊆ C ′
Mem

and Cptr, CMem ⊆ C ′
ptr, C

′
Mem = C ′

e. By Weakening for Terms C ′
Mem `

eMem : Mem(I, τ1). By (T LOAD) C ′
e ` load(e′ptr, eMem) : lin〈τ1, Mem(I, τ1)〉

so C ′
e ` e′ : τ . R’ and M’ are well typed so (FINAL-STEP) applies and

C ′ ` (R′, M ′, e′ : τ).

Using (congruence rule)E[e] = load(vptr, e), (R, M, eMem) → (R′, M ′, e′Mem).

C2 = {I 7→ τ1}; ∅; ∆; ΓeMem
` eMem : Mem(I, τ1) and

Ψspare, {I 7→ τ1}; Θ;∆; ΓeMem
` (R, M, eMem : Mem(I, τ1)). By induction,

C ′
mem = Ψ′

eMem
; Θ′; ∆; ΓeMem

` e′Mem : Mem(I, τ1) and

Ψ′
spare, Ψ

′
eMem

; Θ′; ∆; ΓeMem
` (R′, M ′, e′Mem : Mem(I, τ1)). Since C =

Cptr, CMem, and CMem ⊆ C ′
Mem, by the split subset lemma, there is a C ′

ptr such

that Cptr ⊆ C ′
ptr and Cptr, CMem ⊆ C ′

ptr, C
′
Mem = C ′

e. By Weakening for Terms

C ′
ptr ` vptr : Int(I). By (T LOAD) C ′

e ` load(vptr, e
′
Mem) : lin〈τ1, Mem(I, τ1)〉

so C ′
e ` e′ : τ . R’ and M’ are well typed so (FINAL-STEP) applies and

C ′ ` (R′, M ′, e′ : τ).

2. Case (T STORE): C ` (R, M, e : τ) and

C ` e : τ = Cptr, CMemCv ` store(eptr, eMem, ev) : Mem(I, τ2) where
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Cptr = Ψeptr
; Θ; ∆; Γeptr

` eptr : Int(I), CMem = ΨeMem
; Θ; ∆; ΓeMem

` eMem :

Mem(I, τ1), C3v = Ψev
; Θ; ∆; Γev

` ev : τ2, and ∆ ` τ2 :
non

1 . The evaluation

rules that let e → e′ are (E STORE) and the congruence rules for store.

Using (E STORE), Cptr = ∅; ∅; ∆;
non

Γ eptr
` i : Int(I),

CMem = {i 7→ τ1}; ∅; ∆;ΓeMem
` fact : Mem(I, τ1), Cv = ∅; ∅; ∆; Γev

` v : τ2,

and (R′, M ′, e′) = (R, [i 7→ v]M, fact). C ′
e = {i 7→ τ2}; ∅; ∆; Γ. By (T FACT )

{i 7→ τ2}; ∅; ∆; Γ ` fact : Mem(I, τ2) so C ′
e ` e′ : τ . R′ = R, and M’ is still well

typed so (FINAL-STEP) applies and C ′ ` (R′, M ′, e′ : τ).

Using (congruence rule)E[e] = store(e, emem, ev), (R, M, eptr) → (R′, M ′, e′ptr),

and (R, M, e) → (R′, M ′, e′). By Weakening for Terms, Ce ` eptr : Int(I) and

C ` (R, M, eptr : Int(I)). By induction, C ′
ptr = Ψ′

eptr
; Θ′; ∆; Γeptr

` e′ptr : Int(I)

and Ψ′
spare, Ψ

′
eptr

; Θ′; ∆; Γeptr
` (R′, M ′, e′ptr : Int(I)). Since C = Cptr, CMem/v,

and Cptr ⊆ C ′
ptr, by the split subset lemma, there is a C ′

Mem/v such that

CMem/v ⊆ C ′
Mem/v and Cptr, CMem/v ⊆ C ′

ptr, C
′
Mem/v = C ′

e. By Weakening for

Terms C ′
Mem/v ` eMem : Mem(I, τ1) and C ′

Mem/v ` ev : τ2 . By (T STORE)

C ′
e ` store(e′ptr, eMem, ev) : Mem(I, τ2) so C ′

e ` e′ : τ . R’ and M’ are well typed

so (FINAL-STEP) applies and C ′ ` (R′, M ′, e′ : τ).

Using (congruence rule)E[e] = store(vptr, e, ev), (R, M, eMem) →

(R′, M ′, e′Mem), and (R, M, e) → (R′, M ′, e′). By induction, C ′
Mem =

Ψ′
eMem

; Θ′; ∆; ΓeMem
` e′Mem : Mem(I, τ1) and Ψ′

spare, Ψ
′
eMem

; Θ′; ∆; ΓeMem
`

(R′, M ′, e′Mem : Mem(I, τ1)). Since C = Cptr/v, CMem, and CMem ⊆ C ′
Mem,

by the split subset lemma, there is a C ′
ptr/v such that Cptr/v ⊆ C ′

ptr/v

and Cptr/v, CMem ⊆ C ′
ptr/v, C

′
Mem = C ′

e. By Weakening for Terms

C ′
ptr/v ` vptr : Int(I) and C ′

ptr/v ` ev : τ2. By (T STORE)

C ′
e ` store(eptr, e

′
Mem, ev) : Mem(I, τ2) so C ′

e ` e′ : τ . R’ and M’ are

well typed so (FINAL-STEP) applies and C ′ ` (R′, M ′, e′ : τ).

Using (congruence rule)E[e] = store(vptr, fact, e), (R, M, ev) → (R′, M ′, e′v),
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and (R, M, e) → (R′, M ′, e′). By induction, C ′
v = Ψ′

ev
; Θ′; ∆; Γev

` e′v : τ2

and Ψ′
spare, Ψ

′
ev

; Θ′; ∆; Γev
` (R′, M ′, e′v : τ2). Since C = Cptr/Mem, Cv,

and Cv ⊆ C ′
v, by the split subset lemma, there is a C ′

ptr/Mem such that

Cptr/Mem ⊆ C ′
ptr/Mem and Cptr/Mem, Cv ⊆ C ′

ptr/Mem, C ′
v = C ′

e. By Weakening

for Terms C ′
ptr/Mem ` vptr : Int(I) and C ′

ptr/Mem ` fact : Mem(I, τ1). By

(T STORE) C ′
e ` store(eptr, eMem, e′v) : Mem(I, τ2) so C ′

e ` e′ : τ . R’ and M’

are well typed so (FINAL-STEP) applies and C ′ ` (R′, M ′, e′ : τ).

3. Case (T CREATELOCK): C ` (R, M, e : τ) and

Ce ` e : τ = Cptr, CMem, Cresource` create lock(eptr, eMem, eresource) : Lock(I, τ1)

where Cptr = ∅; Θ; ∆; Γeptr
` eptr : Int(I) and

CMem = {I 7→ Int(0)}; ∅; ∆; ΓeMem
` eMem : Mem(I, Int(0)) and Cresource `

eresource : τ1 :
lin

0 . The evaluation rules that let e → e′ are (E CREATELOCK)

and the congruence rules for create lock.

Using (E CREATELOCK), Cptr ` i : Int(I), CMem ` fact : Mem(I, Int(0)),

Cresource ` vr : τ1, and (R′, M ′, e′) = ([i 7→ 〈fact, vr〉]R, M, lock). C ′
e = {I 7→

Int(0)}; {I 7→ 〈Mem(I, Int(0)), τ1〉}, Θ; ∆; Γ. By (T LOCK1), C ′
e ` lock :

Lock(I, τ1) so C ′
e ` e′ : τ . R’ is still well typed and M = M ′ so (FINAL-

STEP) applies and C ′ ` (R′, M ′, e′ : τ).

Using (congruence rule)E[e] = create lock(e, eMem, eresource),

(R, M, eptr) → (R′, M ′, e′ptr). ∅; ∅; ∆; Γeptr
` eptr : Int(I) and

Ψspare; Θ; ∆; Γeptr
` (R, M, eptr : Int(I)). By induction,

C ′
ptr = Ψ′

eptr
; Θ′; ∆; Γeptr

` e′ptr : Int(I) and Ψ′
spare, Ψ

′
eptr

; Θ′; ∆; Γeptr
`

(R′, M ′, e′ptr : Int(I)). Since C = Cptr, CMem/resource, and Cptr ⊆ C ′
ptr, by

the split subset lemma, there is a C ′
Mem/resource such that CMem/resource ⊆

C ′
Mem/resource and Cptr, CMem/resource ⊆ C ′

ptr, C
′
Mem/resource = C ′

e. By Weakening

for Terms C ′
Mem/resource ` eMem : Mem(I, τ1) and C ′

Mem/resource ` eresource : τ1.

By (T CREATELOCK) C ′
e ` create lock(e′Ptr, eMem, eresource) : Lock(I, τ1)
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so C ′
e ` e′ : τ . R’ and M’ are well typed so (FINAL-STEP) applies and

C ′ ` (R′, M ′, e′ : τ).

Using (congruence rule)E[e] = create lock(vptr, e, eresource),

(R, M, eMem) → (R′, M ′, e′Mem). {I 7→ Int(0)}; ∅; ∆; ΓeMem
` eMem :

Mem(I, Int(0)) and Ψspare, {I 7→ Int(0)}; Θ; ∆; ΓeMem
` (R, M, eMem :

Mem(I, Int(0))). By induction, C ′
Mem = Ψ′

eMem
; Θ′; ∆; ΓeMem

` e′Mem :

Mem(I, Int(0)) and

Ψ′
spare, Ψ

′
eMem

; Θ′; ∆; ΓeMem
` (R′, M ′, e′Mem : Mem(I, Int(0))). Since C =

Cptr/resource, CMem, and CMem ⊆ C ′
Mem, by the split subset lemma, there is

a C ′
ptr/resource such that Cptr/resource ⊆ C ′

ptr/resource and Cptr/resource, CMem ⊆

C ′
ptr/resource, C

′
Mem = C ′

e. By Weakening for Terms C ′
ptr/resource ` vptr : Int(I)

and C ′
ptr/resource ` eresource : τ1. By (T CREATELOCK)

C ′
e ` create lock(ePtr, e

′
Mem, eresource) : Lock(I, τ1) so C ′

e ` e′ : τ . R’ and M’ are

well typed so (FINAL-STEP) applies and C ′ ` (R′, M ′, e′ : τ).

Using (congruence rule)E[e] = create lock(vptr, vMem, e),

(R, M, eresource) → (R′, M ′, e′resource). Ψeresource
; Θ; ∆; Γeresource

` eresource : τ1 and

Ψspare, Ψeresource
; Θ; ∆; Γeresource

` (R, M, eresource : τ1). By induction, C ′
resource =

Ψ′
eresource

; Θ′; ∆; Γeresource
` e′resource : τ1 and

Ψ′
spare, Ψ

′
eresource

; Θ′; ∆; Γeresource
` (R′, M ′, e′resource : τ1). Since C =

Cptr/Mem, Cresource, and Cresource ⊆ C ′
resource, by the split subset lemma, there is

a C ′
ptr/Mem such that Cptr/Mem ⊆ C ′

ptr/Mem and

Cptr/Mem, Cresource ⊆ C ′
ptr/Mem, C ′

resource = C ′
e. By Weakening for Terms

C ′
ptr/Mem ` vptr : Int(I) and C ′

ptr/Mem ` eMem : Mem(I, Int(0)). By

(T CREATELOCK) C ′
e ` create lock(ePtr, eMem, e′resource) : Lock(I, τ1) so

C ′
e ` e′ : τ . R’ and M’ are well typed so (FINAL-STEP) applies and

C ′ ` (R′, M ′, e′ : τ).

4. Case (T ACQUIRE): C ` (R, M, e : τ) and Ce ` e : τ = acquire(eLock, eptr) : τ
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where Ce ` eLock : Lock(I, τ) and Ce ` eptr : Int(I). The evaluation rules that

let e → e′ are (E ACQUIRE1), (E ACQUIRE2), and the congruence rules

for acquire.

Using (E ACQUIRE1), R(i) = 〈fact, vresource〉, M(i) = 0,

Ce = {I 7→ Int(0)}; {I 7→ 〈Mem(I, Int(0)), τ〉}; ∆; ΓeLock
` lock : Lock(I, τ),

Ce ` i : Int(I), and

(R′, M ′, e′) = ([i 7→ 〈fact〉]R, [i 7→ 1]M, vresource). Because R and M were well

typed, by (T RMe) Ce ` vresource : τ .

C ′
e = {I 7→ Int(1)}; {I 7→ 〈Mem(I, Int(1)), τ〉}; ∆; Γ ` vresource : τ so C ′

e ` e′ : τ .

R’ and M’ are well typed so (FINAL-STEP) applies and C ′ ` (R′, M ′, e′ : τ).

Using (E ACQUIRE2), (R′, M ′, e′) = (R, M, e). Ce ` e : τ so Ce = C ′
e ` e′ : τ .

R’ and M’ are well typed so (FINAL-STEP) applies and C ′ ` (R′, M ′, e′ : τ).

The proof for the congruence rules follows the same format as the congruence

rule proofs shown in the load, store, and createlock cases.

5. Case (T RELEASE): C ` (R, M, e : τ) and

Ce ` e : τ = C1, C2 ` release(eLock, eptr, eresource) :non 〈〉, C1 ` eLock : Lock(I, τ1),

C1 ` eptr : Int(I), and C2 ` eresource : τ1. The evaluation rules that let e → e′

are (E RELEASE1), (E RELEASE2) and the congruence rules for release.

Using (E RELEASE1), R(i) = 〈fact〉, M(i) = 1,

C1 = {i 7→ Int(1)}; {i 7→ 〈Mem(I, Int(1)), τ1〉}; ∆;
non

Γ 1` lock : Lock(I, τ1), i :

Int(I), and C2 = Ψ2; Θ; ∆; Γ2 ` vr : τ1, and

(R′, M ′, e′) = ([i 7→ 〈fact, vr〉]R, [i 7→ 0]M, non 〈〉). C∅ `non 〈〉 :non 〈〉 so C ′
e ` e′ :

τ . Ψ′
spare = {i 7→ Int(1)}, Ψspare, Θ′ = {i 7→ 〈Mem(I, Int(1)), τ1〉}, R’ and M’

are well typed so (FINAL-STEP) applies and C ′ ` (R′, M ′, e′ : τ).

Using (E RELEASE2), (R′, M ′, e′) = (R, M, e). Ce ` e : τ so Ce = C ′
e ` e′ : τ .

R’ and M’ are well typed so (FINAL-STEP) applies and C ′ ` (R′, M ′, e′ : τ).

The proof for the congruence rules follows the same format as the congruence
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rule proofs shown in the load, store, and createlock cases.

6. Case (T V AR), (T FACT ), (T LOCK), (T INT ), (T TABS), (T ABS),

(T PACK): C ` (R, M, e : τ) and Ce ` e : τ . There are no evaluation rules

for e.

7. Case (T TAPP ): C ` (R, M, e : τ) and Ce ` e : τ = Ce ` e1τ2 : [α 7→ τ2]τ1

where Ce ` e1 : ∀α : K.τ1 and Ce ` τ2 : K. The evaluation rules that let e → e′

are (E TAPPTABS) and (congruence rule)E[e] = eτ .

Using (E TAPPTABS), e1 = Λα : K; B.v1 : ∀α : K.τ1 and e′ = [α 7→ τ2]v1.

By Inversion (TABS), Ce, α : K ` v1 : τ1. By Term Substiution, Ψe; Θ; ∆; [α 7→

τ2]Γ ` [α 7→ τ2]v1 : [α 7→ τ2]τ1. We can use α-renaming to ensure that αis

not found in Γ. Therefore Ψe; Θ; ∆; Γ ` [α 7→ τ2]v1 : [α 7→ τ2]τ1 = τ ′ and

τ = τ ′ so C ′
e ` e′ : τ . M and R are unchanged so (FINAL-STEP) applies and

C ′ ` (R′, M ′, e′ : τ).

The proof for the congruence rule follows the same format as the congruence

rule proofs shown in the load, store, and createlock cases.

8. Case (T TUPLE). Only congruence rules apply and they follow the same

format as the congruence rule proofs shown in the load, store, and createlock

cases.

9. Case (T APP ): C ` (R, M, e : τ) and Ce ` e : τ = C1, C2 ` e1e2 : τ where

C1 ` e1 : τ1
φ

−→ τ and C2 ` e2 : τ1. The evaluation rules that let e → e′ are

(E APPABS) and the congruence rules for app.

Using (E APPABS), C1 ` λx : τ1
φ

−→ e11 : τ1
φ

−→ τ , C2 ` v : τ1, (R′, M ′, e′) =

(R, M, [x 7→ v]e11). By Term Substitution, Ce, x : τ1 ` e11 : τ . Ce, x : τx `

[x 7→ v]e11 : [τ1 7→ τ1]τ . This does not change τ so C ′
e ` e′ : τ . M and R are

unchanged so (FINAL-STEP) applies and C ′ ` (R′, M ′, e′ : τ).

The proof for the congruence rules follows the same format as the congruence

rule proofs shown in the load, store, and createlock cases.
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10. Case (T LET ): C ` (R, M, e : τ) and Ce ` e : τ = C1, C2 ` let 〈−→xi 〉 = ea in eb :

τ where C1 ` ea : 〈−→τi 〉 and C2,
−−→x : τ ` eb : τ . The evaluation rules that let

e → e′ are (E LET ) and the congruence rules for let.

Using (E LET ), C1 ` 〈v1, . . . , vn〉 : 〈τ1, . . . , τn〉 and (R′, M ′, e′) = (R, M, [x1 7→

v1, . . . , xn 7→ vn]eb). By Term Substitution, C ′
e,
−−→x : τ ` [x1 7→ v1, . . . , xn 7→

vn]eb : [τ1 7→ τ1, . . . , τn 7→ τn]τ . This does not change τ so C ′
e ` e′ : τ . M and R

are unchanged so (FINAL-STEP) applies and C ′ ` (R′, M ′, e′ : τ).

The proof for the congruence rules follows the same format as the congruence

rule proofs shown in the load, store, and createlock cases.

11. Case (T FIX): C ` (R, M, e : τ) and Ce ` e : τ = (fix x : τ.v) : τ where

Ce ` τ :
φ

i and Ce, x : τ ` v : τ . The evaluation rule that lets e → e′ is (E FIX).

Using (E FIX), (R′, M ′, e′) = (R, M, [x 7→ fix x : τ.v]v). By Term Substi-

tution, C ′
e, x : τ ` [x 7→ fix x : τ.v]v : [τ 7→ τ ]τ . This does not change

τ so C ′
e ` e′ : τ . M and R are unchanged so (FINAL-STEP) applies and

C ′ ` (R′, M ′, e′ : τ).

12. Case (T UNPACK): C ` (R, M, e : τ) and Ce ` e : τ = C1, C2 `

unpack α, x = e1 in e2 : τ where C1 ` e1 : ∃α : K.τ1 and C2, α : K, x : τ1 ` e2 : τ .

The evaluation rules that let e → e′ are (E UNPACK) and the congruence

rules for unpack.

Using (E UNPACK), C1 ` (pack[τ2, v1] as∃α : K.τ1) : ∃α : K.τ1 and

(R′, M ′, e′) = (R, M, [α 7→ τ2, x 7→ v1]e2). C1 ` τ2 : K C1 ` v1 : [α 7→ τ2]τ1,

C1 ` ∃α : K.τ1 :
φ

i. By Term Substitution, [α 7→ τ2, x 7→ v1]C
′
e, x : τ1 ` [α 7→

τ2, x 7→ v1]e2 : [α 7→ τ2, x 7→ v1]τ becomes C ′
e, x : [α 7→ τ2]τ1 ` [α 7→ τ2, x 7→

v1]e2 : [α 7→ τ2]τ . By alpha-renaming, we can ensure αis not found in τso

C ′
e ` [α 7→ τ2, x 7→ v1]e2 : τ and C ′

e ` e′ : τ . M and R are unchanged so

(FINAL-STEP) applies and C ′ ` (R′, M ′, e′ : τ).

The proof for the congruence rules follows the same format as the congruence
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rule proofs shown in the load, store, and createlock cases.

13. Case (T IFE): C ` (R, M, e : τ) and Ce ` e : τ = C1, C2 ` if e1 then e2 else e3 :

τ where C1 ` e1 : bool and C2, true ` e2 : τ , and C3, false ` e2 : τ . The evalu-

ation rules that let e → e′ are (E IF1), (E IF2) and the congruence rules for

if.

Using (E IF1), C1 ` e1 = true : bool and (R′, M ′, e′) = (R, M, e2). By

Weakening for Terms Ce = C1, C2, C3 and C2 ⊆ Ce and C2 ` e2 : τ so

Ce = Ψe; ∅; ∆; Γ ` e2 : τ so C ′
e ` e′ : τ . M and R are unchanged so (FINAL-

STEP) applies and C ′ ` (R′, M ′, e′ : τ).

Using (E IF2), C1 ` e1 = false : bool and (R′, M ′, e′) = (R, M, e3). By

Weakening for Terms Ce = C1, C2, C3 and C3 ⊆ Ce and C3 ` e3 : τ so

Ce = Ψe; ∅; ∆; Γ ` e3 : τ so C ′
e ` e′ : τ . M and R are unchanged so (FINAL-

STEP) applies and C ′ ` (R′, M ′, e′ : τ).

The proof for the congruence rules follows the same format as the congruence

rule proofs shown in the load, store, and createlock cases.

B.3 Progress Lemmas

LEMMA [CANONICAL FORMS]

Suppose v is a closed, well-typed expression: C ` v : τ for some τ, C = Ψ; Θ; ∅; ∅.

The first 6 cases only differ from [14] by the elimination of B; limit.

1. If C ` v : τ1
φ

−→ τ2, then v = λx : τ1
φ

−→ e.

2. If C ` v : 〈τ1, . . . τn〉, then v = 〈v1, . . . , vn〉.

3. If C ` v : ∀α : K.τ , then v = Λα : K.v0.

4. If C ` v : ∃α : K.τ2, then v = pack[τ1, v0] as∃α : K.τ2.

5. If C ` v : Int(I), then v = i.
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6. If C ` v : Mem(I, τ) then v = fact.

7. If C ` v : Lock(I, τ) then v = lock.

Proof :

Only one type checking rule can prove C ` v : Lock(I, τ). By (T Lock), we know

v = lock.

B.4 Proof of Progress

If (R, M, e) is closed and well-typed (CRMe ` (R, M, e : τ) for some τ and CRMe =

ΨRMe; ΘRMe; ∅; ∅), then either e is a value or else there is some (R′, M ′, e′) so that

(R, M, e) → (R′, M ′, e′).

Observe that by the rule for typing (R, M, e), we know that ΨRMe = Ψspare, Ψ

and ΘRMe = Θ and C ` e : τ , where C = Ψ; Θ; ∅; ∅. Now prove that (R, M, e)

steps, by induction on the derivation of C ` e : τ (holding M , ΨRMe, and ΘRMe

fixed throughout the induction as C, e, and τ vary). Several cases have not changed

since [14] and have been omitted. Store, load, and the congruence rules are mostly

unchanged and are shown here for consistency.

Proof :

First, if e = E[e0] where e0 is not a value, then by inspection of the type checking

rules, C0 ` e0 : τ0, where C0 = Ψ0; Θ0; ∅; ∅ and ΨMe = Ψ0−spare, Ψ0 ΘMe = Θ0, so by

induction, (R, M, e0) → (R′, M ′, e′0), so (R, M, e) = (R, M, E[e0]) → (R′, M ′, E[e′0]).

For all other cases where e is not a value:

1. e = load(vptr, vMem),

where (T LOAD) C1`vptr:Int(I) C2`vMem:Mem(I,τ)

C1,C2`load(vptr,vMem):lin〈τ,Mem(I,τ)〉
.

By canonical forms, vptr = iptr, and vHas = fact. By inversion, C1 ` iptr :

Int(iptr) and C2 = C ′
2, ihas 7→ τ ` fact : Mem(ihas, τ). Together, these imply

iptr = ihas. Since Ψ(ihas) = τ and memory M is well-typed under CMe =
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ΨMe; ..., where ΨMe = Ψspare, Ψ, we know ihas 7→ τ ∈ ΨMe, so M(ihas) exists,

so M(iptr) exists, so e steps by (E LOAD).

2. e = store(vptr, vMem, vv),

where (T STORE)

C2 ` vMem : Mem(I, τ1) C3 ` vv : τ2

C1 ` vptr : Int(I) C1, C2, C3 ` τ2 :
non

1
C1,C2,C3`store(vptr,vMem,vv):Mem(I,τ2)

.

By canonical forms, vptr = iptr, and vHas = fact, so e steps by (E STORE).

3. e = create lock(vptr, vMem, vresource),

where (T CREATELOCK)C1`eptr:Int(I) C2`eMem:Mem(I,Int(0)) C3`eresource:τ :
lin

0
C1,C2,C3`create lock(eptr,eMem,eresource):Lock(I,τ)

By canonical forms, vptr = i : Int(I), and vMem = fact : Mem(I, Int(0)) so e

steps by (E CREATELOCK).

4. e = acquire(vLock, vptr),

where (T ACQUIRE)C`eLock:Lock(I,τ), eptr:Int(I)
C`acquire(eLock,eptr):τ

By canonical forms, vLock = lock : Lock(I, τ), and vptr = i : Int(I). Since R and

M are well typed under CRMe, ΘRMe(I) = 〈Mem(I, Int(J)), τ〉 and ΨRMe(I) =

Int(J) where J equals 0 or 1. If J = 0, then R(I) = 〈fact, vresource〉 and M(I) = 0

where vresource : τ . Therefore e steps by (E ACQUIRE1). If J = 1, then

R(I) = 〈fact〉 and M(I) = 1. Therefore e steps by (E ACQUIRE2).

5. e = release(vLock, vptr, vresource),

where (T RELEASE)C1`eLock:Lock(I,τ) eptr:Int(I) C2`eresource:τ
C1,C2`release(eLock,eptr,eresource):non〈〉

By canonical forms, vLock = lock : Lock(I, τ), vptr = i : Int(I), and vresource : τ .

Since R and M are well typed under CRMe, ΘRMe(I) = 〈Mem(I, Int(J)), τ〉 and

ΨRMe(I) = Int(J) where J equals 0 or 1. If J = 0, then R(I) = 〈fact, vresource〉

where vresource : τ and M(I) = 0. Therefore e steps by (E RELEASE2). If J =

1, then R(I) = 〈fact〉 and M(I) = 1. Therefore e steps by (E RELEASE1).
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B.5 Erasure Lemmas

LEMMA [ERASE-TERM-SUBSTITUTION]

erase([x 7→ v]e) = [x 7→ erase(v)] erase(e). Proof by induction on the expression e.

LEMMA [ERASE-TYPE-SUBSTITUTION]

erase([α 7→ τ ]e) = erase(e). Proof by induction on the expression e.

LEMMA [VALUE-ERASE-VALUE]

A value will always erase to a value. Proof by induction on the values. The proof is

the same as in[14] with the addition of a lock case and the changed tuple case.

1. erase(lock) = 〈〉 by (ER LOCK).

2. erase(φ〈v1, · · · , vn〉) = 〈vm, · · · , vn〉 for vj : t :
φ

i, i > 0 by (ER TUPLE). By

induction, each remaining value erases to another value.

All the value erase rules produce either values or the erase of another value.

LEMMA [ZERO-ERASE-VALUE]

If C ` v : τthen erase(v : t :
φ

0) = 〈〉. A value with kind
φ

0 will erase to 〈〉. Proof by

induction on the values. The proof is the same as in [14] with the addition of a lock

case and the changed tuple case.

1. By (ER LOCK) erase(fact) = 〈〉.

2. By (ER TUPLE) erase(φ〈v1, · · · , vn〉) (where vi : t :
φ

0) = 〈〉.

LEMMA [TYPE-SUBSTITUTION-VALUE]

[α 7→ τ ]v is a value. Proof by induction on the values.
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LEMMA [TERM-SUBSTITUTION-VALUE]

[x 7→ v]v and [x 7→ fix x.v]v are values. Proof by induction on the values.

c Set

c is the set of expressions e which erase to a value.

c = i | b | cτ | φ〈−→c 〉 | λx : τ
φ

−→ e

| Λα : K.v | pack[τ1, c] as∃α : K.τ2 | fix x : τ :
φ

0 .v | fact | lock

LEMMA [C-ERASE-VALUE]

erase(c) = u. Proof by induction on c. The only new cases are lock and tuple. The

other cases are shown in [14].

1. By (ER LOCK), erase(lock) = 〈〉.

2. By (ER TUPLE), erase(φ〈−→c 〉) = 〈−→v 〉. By induction all the terms of the

erased tuple are either values or another erase(c).

erase(c) is either a value or another erase(c).

LEMMA [NON-C-ERASE-NON-VALUE]

If e 6= c then, erase(e) 6= u. Proof by induction on the expressions. The new cases

are createlock, acquire, and release. The other cases are shown in [14].

1. By (ER CREATELOCK), erase(create lock(eptr, eMem, eresource)) =

create lock( erase(eptr), erase(eMem), erase(eresource))

which is not a value.

2. By (ER ACQUIRE), erase(acquire(eLock, eptr)) =

acquire( erase(eLock), erase(eptr)) which is not a value.
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3. By (ER RELEASE), erase(release(eLock, eptr, ev)) =

release( erase(eLock), erase(eptr), erase(ev)) which is not a value.

All expressions which are not in c erase to non values (or do not erase).

csize function

The cases of csize are unchanged from [14]. Only the parts relevant to λconcurrent

are shown here. Define csize(c) as:

• csize(cτ) = 1 + csize(c)

• csize(φ〈−→c 〉) = sum(csize(ci))

• csize(pack[τ1, c] as∃α : K.τ2) = 1 + csize(c)

• csize(fix x : τ :
φ

0 .v) = 1

• csize(v) = 0

LEMMA [C-SIZE-DECREASES]

If C ` c : τ , where C has an empty ∆ and Γ, and (M, c) steps, then there is some c′

so that (M, c)
+
→ (M, c′) and csize(c) > csize(c′). Proof by induction on the possible

evaluation rules. In all cases we reach c′ by taking only one step. The cases are

unchanged from [14]. Only the parts relevant to λconcurrent are shown here.

1. (Λα : K.v)τ
(E TAPPTABS)

→ [α 7→ τ ]v. csize((Λα : K.v)τ) = 1. By Type-

Substitution-Value, [α 7→ τ ]v is a value so csize([α 7→ τ ]v) = 0.

2. fix x : t :
φ

0 .v
(E FIX)
→ [x 7→ fix x : t :

φ

0 .v]v. By Term-Substitution-Value,

[x 7→ fix x : t :
φ

0 .v]v is a value. csize(fix x : t :
φ

0) = 1 > 0

3. c
(congruence rule)c=E[c1]

→ c′. By induction, (M, c1) → (M, c′1) and csize(c1) >

csize(c′1) so csize(E[c1]) > csize(E[c′1]).
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LEMMA [C-*STEP-VALUE]

If C ` c : τ , where C has an empty ∆ and Γ, then (M, c)
∗
→ (M, v). The proof is

shown in [14] and makes use of the C-Size-Decreases Lemma.

LEMMA [UNTYPED-NON-VALUES-STEP]

If C ` (R, M, e : τ) where C has an empty ∆ and Γ and erase(e) is a non value,

then erase((R, M, e)) → (L′, d′). Proof by induction on the expressions. The original

proof is shown in [14]. Cases for lock, createlock, acquire, and release are shown here.

1. e = lock, erase(e) is a value.

2. e = create lock(eptr, eMem, eresource) | acquire(eLock, eptr)

| release(eLck, eptr, eresource).

The proofs for all of these are similar so we will only show one.

e = acquire(eLock, eptr).

If eLock is a value, erase(acquire(eLock, eptr)) = acquire( erase(eLock), erase(eptr))

by

(ER ACQUIRE). If eptr = c, by C-Erase-Value erase(eptr) = uptr so erase(e) =

acquire(uptr,) and erase(e) can step by (D ACQUIRE1) or (D ACQUIRE2).

If eptr 6= c by Non-C-Erase-Non-Value erase(eptr) 6= u. By induction,

erase((R, M, eptr)) → (L′, dptr) and erase(e) steps by the acquire congruence

rule.

If eLock is a not a value, erase(acquire(eLock, eptr)) =

let x = erase(eLock) in acquire( erase(eptr),) by (ER ACQUIREe0). By induc-

tion, erase((R, M, eLock)) → (L′, dLock) and erase(e) steps by the let congruence

rule.
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B.6 Proof of Progress after Type Erasure

If e is a closed, well-typed expression (C ` e : τ for some τ and C = Ψ; Θ; ∅; ∅),

then the following statements hold:

1. (Erasure-Progress-1) If (R, M, e) → (R′, M ′, e′) then

erase((R, M, e))
?
→ erase((R′, M ′, e′)).

2. (Erasure-Progress-2) If erase(e) is a value then

(R, M, e)
∗
→ (R′, M ′, v), erase((R, M, e)) = erase((R′, M ′, v)).

3. (Erasure-Progress-3) If erase((R, M, e)) → (L′, d′) then

(R, M, e)
+
→ (R′, M ′, e′), erase((R′, M ′, e′)) = (L′, d′).

In the cases where e does not affect locks, (R = R′), (R, M, e) → (R′, M ′, e′) is

abbreviated to (M, e) → (M ′, e′). Similarly, in the cases where e does not affect

memory, (M = M ′), (M, e) → (M ′, e′) is abreviated to e → e′. The cases involving

create lock, acquire, and release affect locks and the cases involving loads, stores,

and congruence rules have the potential to affect memory. The cases which are

unchanged from [14] have been omitted.

THEOREM [Erasure-Progress-1]

C ` (R, M, e : τ) (R, M, e) → (R′, M ′, e′)

erase((R, M, e))
?
→ erase((R′, M ′, e′))

If (R, M, e) evaluates in one step to (R′, M ′, e′), then erase((R, M, e)) evaluates

in zero or one steps to erase((R′, M ′, e′)). Proof by induction on the typed evaluation

rules. Most cases do not differ from [14] and have been ommitted. The load and

store cases are shown along with the cases for createlock, acquire, and release.

There are several cases for this proof. For each, we list the evaluation rules which

follow the case and show one proof. The other proofs in each case can be obtained

using a similar proof to the example.
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• Case: (R, M, e) → (R′, M ′, e′) using a typed evaluation rule and

erase((R, M, e)) → erase((R′, M ′, e′)) using the corresponding untyped (or

typed) evaluation rule.

1. (E LOAD)If e
(E LOAD)

→ e′ then (M, e) = (M, load(i, fact)) and (M ′, e′) = (M, lin

〈M(i), fact〉).

2. (E STORE) If e
(E STORE)

→ e′ then (M, e) = (M, store(i, fact, v)) and (M ′, e′) =

([i 7→ v]M, fact).

3. (E CREATELOCK) If e
(E CREATELOCK)

→ e′ then

(R, M, e) = (R, M, create lock(i, fact, vresource)) where M(i) = 0 and (R′, M ′, e′) =

([i 7→ 〈fact, vresource〉]R, M, lock).

4. (E ACQUIRE1) If e
(E ACQUIRE1)

→ e′ then (R, M, e) = (R, M, acquire(lock, i))

where R(i) = 〈fact, vresource〉 and M(i) = 0 and (R′, M ′, e′) = ([i 7→ 〈fact〉]R, [i 7→

1]M, vresource).

5. (E ACQUIRE2) If e
(E ACQUIRE2)

→ e′ then (R, M, e) = (R, M, acquire(lock, i))

where R(i) = 〈fact〉 and M(i) = 1 and (R′, M ′, e′) = (R, M, acquire(lock, i)).

6. (E RELEASE1) If e
(E RELEASE)

→ e′ then

(R, M, e) = (R, M, release(lock, i, vresource)) where R(i) = 〈fact〉 and M(i) = 1

and (R′, M ′, e′) = ([i 7→ 〈fact, vresource〉]R, [i 7→ 0]M, 〈〉).

7. (E RELEASE2) If e
(E RELEASE)

→ e′ then

(R, M, e) = (R, M, release(lock, i, vresource)) where R(i) = 〈fact, vresource〉 and

M(i) = 0 and (R′, M ′, e′) = (R, M, release(lock, i, vresource)).

Proof :

(E CREATELOCK) If e
(E CREATELOCK)

→ e′ then

(R, M, e) = (R, M, create lock(i, fact, vresource)) and

(R′, M ′, e′) = ([i 7→ 〈fact, vresource〉]R, M, lock). By (T CREATELOCK) M(i) = 0.

erase((R, M, e)) = ( erase(M), erase(e)) by (ER RMe) and (ER M).
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This equals (L, erase(create lock(i, fact, vresource))) =

(L, create lock( erase(i), erase(fact), erase(vresource))) by (ER CREATELOCK)

and equals (L, create lock(i, 〈〉, 〈〉)) by (ER i), (ER FACT ), and Zero Erase Value.

erase((R′, M ′, e′)) = ( erase(M ′), erase(e′)) by (ER RMe). This equals

(L′, erase(lock)) = (L′, 〈〉) by (ER LOCK) and (ER M). Finally,

(L, create lock(i, 〈〉, 〈〉))
(D CREATELOCK)

→ (L, 〈〉) where L(i) = 0 so

erase((R, M, e)) → erase((R′, M ′, e′)).

THEOREM [ERASURE-PROGRESS-2]

C ` (R, M, e : τ) where C has an empty ∆ andΓ erase(e) is a value

(R, M, e)
∗
→ (R, M, v), erase((R, M, e)) = erase((R, M, v))

The proof is unchanged with the addition of locks and is shown in [14]. It makes use

of the C-*Step-Value Lemma.

THEOREM [ERASURE-PROGRESS-3]

C ` (R, M, e : τ) where C has an empty ∆ andΓ erase((R, M, e)) → (L′, d′)

(R, M, e)
+
→ (R′, M ′, e′), erase((R′, M ′, e′)) = (L′, d′)

If erase(e) is not a value then, by Untyped-Non-Values-Step, erase((R, M, e))

evaluates to (L′, d′). Additionally, (R, M, e) evaluates in one or more steps to

(R′, M ′, e′), and erase((R′, M ′, e′))= (L′, d′). Proof by induction on the expressions.

Most cases are unchanged from [14] so we only show load and store along with lock,

createlock, acquire, and release.

1. Let e = lock

By Value-Erase-Value, erase(v) = u and Erasure-Progress-3 does not apply.

2. Let (R, M, e) = (R, M, load(eptr, eMem)) | (R, M, store(eptr, eMem, ev))

| (R, M, acquire(eLock, eptr)) | (R, M, create lock(eptr, eMem, ev))

| (R, M, release(eLock, eptr, ev))
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The proofs for these cases are similar. We will only show one of the proofs.

Let (R, M, e) = (R, M, load(eptr, eMem)).

erase((R, M, e)) = erase((R, M, load(eptr, eMem)))

= ( erase(M), erase(load(eptr, eMem))) = (L, load( erase(eptr), erase(eMem))

by (ER RMe), (ER M), and (ER LOAD).

If eptr and eMem are in c, erase(eptr) and erase(eMem) are values so by Erasure-2,

(M, eptr)
∗
→ (M, vptr) where erase(vptr) = erase(eptr) and

(M, eMem)
∗
→ (M, vMem) where erase(vMem) = erase(eMem). By (T LOAD),

erase(eptr) = i and erase(eMem) = 〈〉. erase((R, M, e)) = (L, load(i, 〈〉))
(D LOAD)

→

(L, 〈L(i), 〈〉〉) = (L′, d′).

(R, M, e) =

(R, M, load(eptr, eMem))
∗,(congruence rule)E[e]=load(e,e2)

→ (R, M, load(vptr, eMem))

∗,(congruence rule)E[e]=load(v,e)
→ (R, M, load(vptr, vMem)) = (R, M, load(i, fact)) by Canon-

ical forms and (T LOAD). (R, M, load(i, fact))
(E LOAD)

→ (R, M, lin 〈M(i), fact〉)

= (R′, M ′, e′).

erase((R′, M ′, e′)) = erase((R, M, lin 〈M(i), fact〉)) = (L, 〈L(i), 〈〉〉) = (L′, d′).

If eptr is in c but eMem is not, erase(eptr) is a value so by Erasure-2, (M, eptr)
∗
→

(M, vptr) where erase(vptr) = erase(eptr). eMem is not a value so erase((M, eMem)) →

(L′, dMem) by Progress and (M, eMem)
+
→ (M ′, e′Mem) and erase((M ′, e′Mem)) =

(L′, dMem) by induction.

By (T LOAD), erase(eptr) = i. erase((R, M, e)) = (L, load(i, erase(eMem))) →

(L′, load(i, dMem)) = (L′, d′).

(R, M, e) = (R, M, load(eptr, eMem))

∗,(congruence rule)E[e]=load(e,e2)
→ (R, M, load(vptr, eMem))

+,(congruencerule)E[e]=load(v,e)
→ (R′, M ′, load(vptr, e

′
Mem))

= (R′, M ′, load(i, e′Mem)) by Canonical forms and (T LOAD). = (R′, M ′, e′).

erase((R′, M ′, e′)) = erase((R′, M ′, load(i, e′Mem))) = (L′, load(i, dMem)) = (L′, d′).
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If eptr is not in c, eptr is not a value so erase((M, eptr)) → (L′, dptr) by Progress

and

(M, eptr)
+
→ (M ′, e′ptr) and erase((M ′, e′ptr)) = (L′, dptr) by induction.

erase((R, M, e)) =

(L, load( erase(eptr), erase(eMem))) → (L′, load(dptr, erase(eMem))) = (L′, d′).

(R, M, e) =

(R, M, load(eptr, eMem))
∗,(congruence rule)E[e]=load(e,e2)

→ (R′, M ′, load(e′ptr, eMem))

= (R′, M ′, e′).

erase((R′, M ′, e′)) =

erase((R′, M ′, load(e′ptr, eMem))) = (L′, load(dptr, erase(eMem)) = (L′, d′).
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C Lock Implementation in Clay

This implementation of locks is done in Clay and matches the abstract syntax in

Appendix A.

Included Clay types and functions

type Int[I] = native

@type0 Mem[int I, int T] = native

typedef Ptr[int I, int T] = @[Int[I], Mem[I,T]]

The above types are needed to implement locks. Int[I] is a singleton integer and

a pointer to memory location I. Mem is the memory State Type which tracks a word

of linear memory. Mem[I, T ] means that memory location I contains a value of type

Int[T ]. Ptr[I, T ] is a linear pair of a pointer to linear memory and its associated

Mem.

Locks in Clay

The Clay lock code defines the basic lock type and functions and implements the

outer lock creation function.

// Lock0 is the lock type. Lock is a Lock0 and a lock bit pointer

type0 Lock0[int Bit, @type0 Resource] = native

typedef Lock[int Bit, @type0 Resource] =

.[Lock0[Bit, Resource], Int[Bit]]

// Lock creation functions

native Lock0[B,R] create_lock0

[@type0 R, int B] (R resource, Mem[B,0] bit) limited[0];

Lock[B,R] create_lock

[@type0 R, int B] (R resource, Ptr[B,0] bit_ptr)
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{

let (bit_addr, bit_mem) = bit_ptr;

let lock0 = create_lock0(resource, bit_mem);

return .(lock0, bit_addr);

}

// Lock acquire function

native R acquire [int B, @type0 R] (Lock[B,R] lock);

// Lock release function

native void release [int B, @type0 R] (Lock[B,R] lock, R resoure);

Locks in C

The C lock code implements the types and functions declared (unlimited) native in

the Clay lock code.

// Acquire function sets a lock bit to 1 when it becomes 0.

void acquire(unsigned long lock)

{

int a = 1;

while (a == 1)

a = atomic_test_and_set(*((int *)lock)); // assembly x86 btsl

}

// Release function sets a lock bit to 0 when it becomes 1.

void release(unsigned long lock)

{

int a = 0;

while (a == 0)

a = atomic_test_and_clear(*((int *)lock)); // assembly x86 btcl

}
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D Built-in Primitives

In my abstract machine, the lock type and access expressions need to be added to

the syntax and rules before I prove soundness. A Lock is an example of a state

type which takes another state type as a parameter. Like Mem, locks needs their

own environments R and Θ to hold the linear resources and their types. Further

state types also need to be added individually with their access expressions, and

environments before soundness can be re-proven.

State types could be expressed through consolidated typing and kinding rules

with only 2 new environments. However, the downsides to this approach cause this

abstract machine to have just as many evaluation rules as my abstract machine so I

decided for simplify to add state types such as locks as needed.

consolidated environments

S = {σ1 7→ K1, · · · , σn 7→ Kn}

T = {χ1 7→ τ1, · · · , χn 7→ Kn}

C = Ψ; T, ∆; Γ

S is the state kind environment which maps state types (such as Mem) to kinds.

If Mem was removed from the abstract machine and replaced with a state type, the

S environment would show S(Mem) = (int,
non

1 ) →
lin

0 meaning Mem takes a kind int

and a kind non-linear size 0 and has type linear size 0.

T is the state type environment which maps state type operations (such as load)

to types. Keeping the Mem example,

T (load) = Λα : int, β :
non

1 . lin 〈Mem(α, β), Int(α)〉 →lin 〈Int(β), Mem(α, β)〉

which means that load takes a singleton integer (a pointer) and a matching Mem
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and returns a value of type β.

consolidated typing rules

(T STATE)
non

C ` χ : T (χ)

consolidated kinding rules

(K STATE)∆ ` σ : S(σ)

The above syntax and rules would add state types to the abstract machine. This

would allow all state types values to be expressed by one type and aid polymorphism.

The same principle could be applied to configuration types. However, the state

type operations include any expressions or operations which take state types as

arguments. Using these operations would require a list of constants for the operations

(load, store, set irq, ...) and an evaluation rule for each operation ((E LOAD),

(E STORE), ...). As this would not drastically shorten an abstract machine which

includes the many state and configuration types needed by an operating system, this

abstract machine does not use the consolidated state and configuration types.
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