Big Question: Why the Matter — Antimatter Asymmetry? Looking for clues with (relatively) small scale experiments

Marty Ligare Department of Physics & Astronomy Bucknell University

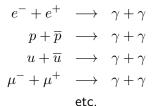
March 28, 2024

History:

- Dirac, 1928: Electrons "could" have positive or negative charge
- ▶ Anderson 1932: First definitive observation of particles with the mass of the electron, but positive charge, e^+

 $\blacktriangleright \beta$ decay:

$$n \longrightarrow p + e^- + \overline{\nu}_e$$


$$\operatorname{Co}^{60} \longrightarrow {}^{60}_{49}\operatorname{Ni} + p + e^{-} + \overline{\nu}_{e}$$

Present:

- We make exotic atoms with antimatter, e.g., positronium, a hydrogen-like atom with the proton replaced by a positron.
- We make and trap anti-hydrogen made from an anti-proton and an anti-electron.

Anti-matter Review, cont'd

Matter – Anti-matter Annihilation

Anti-matter in the Universe

- Matter and anti-matter produced in big bang
- Current understanding: equal matter and anti-matter produced
- Anti-matter not present in contemporary universe
- Either:
 - asymmetric production, or
 - asymmetric process later on

PROBLEM: We don't know of any process that would result in this asymmetry.

Why this talk (from me)?

Historical Diversion: Symmetry and Physics, Part 1

Interesting (and powerful) symmetries I am **not** going to discuss today

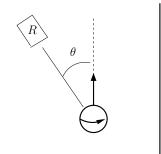
Point symmetries and group theory

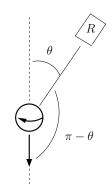
Historical Diversion: Symmetry and Physics, Part 1

Interesting (and powerful) symmetries I am **not** going to discuss today

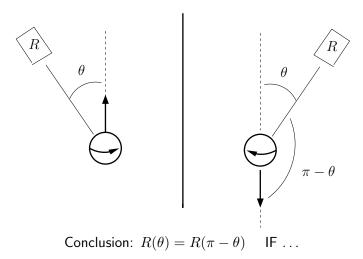
- Point symmetries and group theory
- Continuous symmetries:
 - Translational invariance —> conservation of momentum
 - ▶ Rotational invariance \longrightarrow conservation of angular momentum

Historical Diversion: Symmetry and Physics, Part 2A


One powerful symmetry I am going to discuss:


Discrete symmetry I: Reflection Symmetry

Reflection symmetry — An example from E&M


Reflection symmetry and β decay



Reflection symmetry and β decay

MIRROR

Wu experiment simplified

Save the day with an additional discrete symmetry?

Reflection Symmetry \longrightarrow Reflection Symmetry combined with Charge Conjugation Symmetry

a.k.a.

 $P \longrightarrow PC$

CP symmetry and neutrinos

- All neutrinos are left-handed
- All neutrinos are right-handed

CP symmetry not enough

Fitch/Cronin experiment (1964):

Obeserved

$$K^0 \longrightarrow \pi^0 + \pi^0$$

when it could only be result of CP violation.

Fitch/Cronin Nobel prize (1980).

ТСР

i.e., symmetry under the combination of

Time Reversal and Charge Conjugation and Parity (Reflection)

"It s simply impossible to construct a quantum field theory in which the product TCP is violated."

David Griffiths

Time reversal symmetry

Compare, e.g.,

$$n + p \longrightarrow d + \gamma$$

with

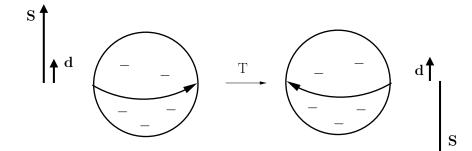
$$\gamma + d \longrightarrow n + p$$

or

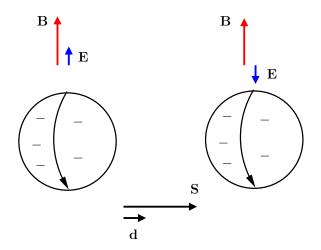
$$\Lambda \longrightarrow p + \pi^{-}$$

with

$$p + \pi^- \longrightarrow \Lambda$$


Back to original puzzle. Where to look for clues?

- Higher energy collisions in particle accelerators. (Lower energy phenomena mapped out very well in Standard Model.
- Higher energy collisions in astrophysical settings.
- Indirect consequences of particle–antiparticle assymmetry (Use the TCP theorem!) See below:
- "An improved bound on the electron's electric dipole moment" Roussy, et al., Science **381**, 46 (2023)


Abstract:

The imbalance of matter and antimatter in the Universe provides compelling motivation to search for undiscovered particles that violate charge-parity symmetry. Interactions with vacuum fluctuations of the fields associated with these new particles will induce an electric dipole moment of the electron (eEDM) ...

eEDMs and Time Reversal Symmetry

COMPARE PRECESSION RATES

"Our result is consistent with zero and improves on the previous best upper bound by a factor of $\sim\!2.4$. Our results provide constraints on broad classes of new physics about 10^{13} electron volts, beyond the direct reach of the current particle colliders or those likely to be available in the coming decades."