
Topic 5

Representation of Sinusoidal
Functions with Complex Numbers
and Phasors

Material discussed 1/29/19 – 1/31/19

5.1 Introduction

It is very useful to be able to represent sinusoidal functions in several ways, some
of which exploit the relationship between sines and cosines and complex exponen-
tials. The goal is to be able to convert easily between four representations of a
sinusoidal function like those displayed in Fig. 5.1. If you see one representation,
the others should be at your fingertips.

All of the representations in Fig. 5.1 refer to the same electrical oscillation: a
cosine function with an amplitude of 0.3V, a period T = 20ms, a frequency f =
1/T = 50Hz, and angular frequency ω = 2πf = 100π ≃ 314.16 s−1, and a phase shift
of φ = 45◦ = π/4 rad ≃ 0.79 rad. Representation A is a graphical representation
like you might see on the face of an oscilloscope; Representation B is the standard
algebraic representation of a cosine function with the appropriate amplitude, angular
frequency, and phase. Representations C and D may not be as familiar to you —
they display algebraic and graphical representations of complex numbers that are
used to represent the oscillation.
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Representation A

Representation D

Representation B

v(t) = 0.3 cos(100πt+ π/4)

Representation C

ṽ(t) = 0.3 ej(100πt+π/4)

or

v(t) = 0.3∠45◦
(frequency implied)

Figure 5.1: Four equivalent representations of the same sinusoidal function that might
appear on an oscilloscope screen as in Representation A.
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5.2 Review: Complex Numbers and the Complex

Plane

The imaginary unit j is defined such that

j2 = −1. (5.1)

(In electronics and electrical engineering we use j instead of i to avoid confusion
with current, which is often denoted by i.)

Complex numbers are numbers that are the linear combination of an imaginary
part and a real part:

z = a+ jb, (5.2)

where a and b are both real numbers. We say that the real part of the complex
number z is a (or Re(z) = a) and the imaginary part is b (or Im(z) = b). Complex
numbers can be plotted in the complex plane, where the real part of the number is
plotted along the horizontal axis, and the imaginary part of the number is plotted
along the vertical axis. For example, the complex number z1 = 4 + 3j, with a real
part of 4 and an imaginary part of 3, and the complex number z2 = 4− 3j, with a
real part of 4 and an imaginary part of −3, are plotted in Fig. 5.2.

The complex conjugate of a complex number is formed by taking all j’s and
turning them into −j’s, e.g., if z = a + jb, then the complex conjugate, denoted
with an asterisk, is z∗ = a − jb. In the example illustrated in Fig. 5.2, z2 is the
complex conjugate of z1.

The absolute value of a complex number, |z|, often called the modulus is equal
to the distance from the origin to the point as plotted in the complex plane. For a
complex number z = a+ jb, the absolute magnitude is

|z| =
√
a2 + b2.

It is useful to note the relationship

|z| =
√
z × z∗.

5.3 Review: The complex exponential

Euler’s relations,

ejθ = cos θ + j sin θ and e−jθ = cos θ − j sin θ (5.3)
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Figure 5.2: Plotting of complex numbers in the complex plane.

can be inverted to give

cos θ =
ejθ + e−jθ

2
and sin θ =

ejθ − e−jθ

2j
. (5.4)

These relations suggest an alternative way to write complex numbers. For example,
consider the quantity Rejθ. Using the relations above we find that

Rejθ = R(cos θ + j sin θ) = R cos θ + jR sin θ. (5.5)

This is just a complex number with a real part of R cos θ and and imaginary part of
R sin θ. Writing complex numbers in the form of complex exponentials encourages
the geometric interpretation of complex numbers in the complex plane as is illus-
trated in Fig. 5.3 for the general complex number z = Rejθ = a+ jb. Relationships
between the quantities a, b, R, and θ are fundamentally geometric in nature, and
they are analogous to the relationships between the components of a vector and the
vector’s magnitude and direction.

5.4 Arithmetic of Complex Numbers

Consider two complex numbers,

z1 = a1 + jb1 = R1 e
jθ1 and z2 = a2 + jb2 = R2 e

jθ2 . (5.6)
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Re

θ = tan−1(b/a)

z = a+ jb = Rejθ

Im

a = R cos θ

R =
√
a2 + b2

b = R sin θ

Figure 5.3: Geometric interpretation of complex exponential representation of complex
numbers.

Addition: To add complex numbers simply add the real parts and imaginary parts
separately. This is easiest in the “a+ jb” representation:

z1 + z2 = (a1 + a2) + j(b1 + b2). (5.7)

Multiplication: Complex numbers are easiest to multiply in the “Rejθ” represen-
tation:

z1 × z2 = R1R2e
j(θ1+θ2), (5.8)

although it’s not too bad as

z1 × z2 = (a1 + jb1)(a2 + jb2)

= (a1a2 − b1b2) + j(a1b2 + a2b1) (5.9)

Here’s an example of division:

3 + j4

2− 2j
=

5 ej tan
−1(4/3)

√
8 ej tan−1(1)

=
5

2
√
2
ej(tan

−1(4/3)−tan−1(1))

≃ 1.77e0.142j (5.10)

5.5 AC Signals and Complex Numbers

Consider a sinusoidal signal

v1(t) = R1 cosωt. (5.11)
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Figure 5.4: Rotating phasor whose real part corresponds to a real ac signal.

This signal is the real part of the complex function

ṽ1 = R1 e
jωt = R1 cosωt+ jR1 sinωt. (5.12)

The complex quantity ṽ1 can be represented by a rotating phasor in the complex
plane, and the real signal is the projection of the rotating phasor on the real (hor-
izontal) axis. The phasor rotates counterclockwise as the angle ω1t increases with
time as is illustrated in Fig. 5.4.

Complex representation of sinusoidal signals becomes very useful when you want
to add signals that are out of phase with each other. (This is the kind of thing
you need do with Kirchoff’s loop rule in AC circuits.) For example, consider the
addition of the signal v1(t) to a second signal

v2(t) = R2 cos(ωt+ φ2). (5.13)

This signal is the real part of

ṽ2 = R2 e
j(ωt+φ2) =

(
R2 e

jφ2

)
ejωt (5.14)

At time t = 0 the phasors representing the two signals are illustrated in Fig. 5.5.
The complex signal ṽ1 is entirely real at this time, and the signal ṽ2 is oriented at
an angle φ2 above the real axis. The sum of the two phasors representing ṽ1 and ṽ2
is also shown in the figure. As time increases from t = 0 all the phasors will rotate
counterclockwise an angular frequency ω, but the lengths and relative orientations
of the phasors will remain the same — the phasor representing ṽ2 will always be
ahead of the phasor representing ṽ1 by an angle φ2, and the phasor representing the
sum of the two signals will always be ahead of ṽ1 by the same angle α (and behind
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Figure 5.5: Phasors representing out of phase signals and their sum.

ṽ2 by an angle φ2−α). The angle α and the magnitude Rtot can be calculated using
geometry and trigonometry in a manner that is analogous to the determination of
the magnitude and direction when determining the sum of vectors.
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