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Fundamental Constants

2018 CODATA values from NIST, at http://physics.nist.gov/cuu/Constants

Numbers in parentheses are uncertainties in the last two digits of the listed value.

speed of light in vacuum

Planck constant

constant of gravitation

Coulomb force constant

permittivity

permeabilitiy constant

constant

elementary charge

Avogadro constant

Boltzmann constant

electron mass

proton mass

neutron mass

¢ =299 792 458 m/s (exact)

h = 6.626 070 15 x 10734 J-s (exact)

fi=1.054571818 --- x 10734 J-s

he =1240--- eV-nm

G = 6.674 30(15) x 10~ N-m?/kg?

ko = 8.987 551 792 2(13) x 10° N-m?2/C2

¢o = 8.854 187 812 8(13) x 1012 C2/N-m?

o = 4 x 1.000 000 000 54(15) x 107" N/A?

e = 1.602 176 634 x 10719 C (exact)

N4 = 6.022 140 76 x 10?3 molecules/mol (exact)

kp =1.380 649 x 107 J/K (exact) =~8.62x 107°eV/K
me = 9.109 383 7015(28) x 10-¥' kg =~ 0.511 MeV /2
m, = 1.672 621 923 69(51) x 10> kg ~ 938.3 MeV /c?
m, = 1.674 927 498 04(95) x 107*"kg =~ 939.6 MeV /c?

Miscellaneous Physical Data

gravitational field strength (sea level) g =9.81N/kg

sun: mass = 1.99 x 103 kg radius = 6.96 x 108 m
earth: mass = 5.97 x 10**kg radius = 6.37 x 10°m
moon: mass = 7.35 x 10?2 kg radius = 1.74 x 10°m

mean earth-sun distance = 1.50 x 10 m

mean earth-moon distance = 3.84 x 10¥m

Metric Prefixes

centi
milli
micro
nano
pico

femto

c=10"?
m = 1073
pu=10"°
n=10"
p=10"12
f=10"1

kilo k =103

mega M = 10°¢
giga G = 10°
tera T = 10'2

peta P = 10"
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Additional Problems

A1l. Graphing Motion I: Bouncing Ball.

(a)

Pick up your larger superball (the one in your toy kit with the
animal inside it), toss it straight up, and catch it when it comes
back down to your hand. Watch the motion very carefully. Answer
the following questions: Just after the ball leaves your hand, is
the speed the largest, in the middle, the smallest, or zero? Is the
velocity direction up or down?

Answer the same questions for the ball when it is halfway up to
its highest point, when it is at its highest point, when it is halfway
down, and when it reaches your hand again.

Now, make sketches of the ball’s (i) vertical position versus time
(choose “up” as the positive direction and y = 0 as the ground) as
the ball rises and then falls back to your hand, (ii) velocity versus
time, and (iii) acceleration versus time. Don’t worry about putting
any numbers on the graphs; just make a qualitative sketch. Make
sure that your plot of velocity versus time is consistent
with your answers from part (a).

Drop the ball on the ground and watch it carefully as it bounces up
and down a few times. Answer the following questions: just before
the ball hits the ground, is the speed at its peak (i.e., large), in the
middle, near its slowest value, or zero, and does the velocity point
upward or downward? Answer the same questions for the ball just
after it hits the ground and starts moving upward.

Now, make qualitative sketches of the ball’s (i) vertical position
versus time as the ball drops toward the ground before the bounce,
and while the ball moves away from the ground after the bounce,
(ii) velocity versus time, and (iii) acceleration versus time. Make
sure your plot of velocity is consistent with your answers
from part (c).

Consider what the graphs of vertical position versus time, velocity
versus time, and acceleration versus time look like for the short
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period of time while the ball is in contact with the ground. Sketch
on your graph from part (d).

A2. Graphing Motion II: Spring and Return Ball.

(a) Take your round metal spring and your “return ball” (the little

rubber ball attached to an elastic string). You want to hang the
return ball from the bottom of the spring. It used to be that the
return ball was the perfect size to jam into one end of the metal
spring. Try jamming it in — if the ball is too small and it doesn’t
stay inside, then another approach is to stretch the last few turns
of the spring and jam the return ball in from the side (it looks a bit
like a Pac-Man when you do this).
When you have the return ball hanging from the end of the spring,
hold the spring from the other end, and let the spring/ball system
hang vertically and allow it to come to rest (you are welcome to
use your other hand to help the end of the spring with the ball stop
moving). Be careful that the string on the return ball doesn’t get
tangled in the spring.

(b) Call the position of the ball when it is motionless y = 0. Now, pull
the ball end of the spring straight down approximately 6 — 10 inches
(the exact distance isn’t that important) and release the ball end of
the spring. Make sure that the subsequent motion of the ball and
the spring is as vertical as possible.

(¢) Make qualitative plots of the ball’s (i) vertical position versus time
for a few cycles, and (ii) vertical velocity versus time. Use your
sketch of the ball’s vertical velocity versus time to make a qualitative
sketch of the ball’s vertical acceleration vs. time. (Hint: ask the
same questions as in Problem Al if you are stuck. Specifically
consider the ball’s position and velocity when it is at the maximum
distance from y = 0 and also consider the ball’s position and velocity
when it is passing through y = 0.)

A3. Falling Birdie. Consider a badminton birdie that is falling under
the influence of gravity and air resistance. Assume that the vertical
acceleration of this birdie is given by

_dv

= —g—b
dt g U7

Qy
where ¢ = 9.8m/s? and b is some constant that depends on the mass
and shape of the birdie along with properties of the air, and v is the
instantaneous velocity of the bird (positive if the velocity is down and
negative if the velocity is up). Suppose that the birdie is released from
rest at time t = 0.
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(a)

(b)

Discuss qualitatively how the speed of the birdie varies with time,
given your knowledge of the relationship between the acceleration
and the rate of change of the velocity. What is the velocity when the
acceleration is zero? (This is called the terminal velocity.) What
happens to the velocity after the acceleration reaches zero?

Without solving the equation above, sketch v(t) vs. ¢. This can
be done as follows: at t = 0, v is zero and the slope is g. Sketch
a straight-line segment, neglecting any change in the slope for a
short time interval. At the end of the interval, the velocity is no
longer zero, so the slope is no longer g. Sketch another straight-
line segment with the qualitatively appropriate slope for the next
short time interval. Continue until your sketch shows the birdie has
reached terminal velocity. What is the slope of the line after the
birdie has reached terminal velocity?

A4. Estimating Velocities: Muzzle Speed of a Blow Dart. Be careful!
Students in the past have set off the sprinkler and fire alarms in their
dorms! Consider doing this outside or somewhere where the ceiling is
very high.

(a)

To estimate the “muzzle speed” of a blow dart, fire the dart straight
up into the air and time how long it takes to come back down.
Roughly half of that time is the time for the object to decelerate
from its initial velocity to motionless (at the top of its motion).
Warning: students often over-estimate the time required for the
trip. Remember to count “0” when you fire the dart (“0 and 1 and
2and...”)

Now, use
Av
Gme = Ay
to estimate the initial velocity. Keep this estimate handy: you’ll
use it later on in this unit.

A5. Graphing Motion III: Blow darts.

(a)

Fire a blow dart roughly horizontally (don’t worry about the vertical
motion here) at a smooth surface on which it will stick. (Windows
make nice targets, but be careful with flat panel displays — students
have broken them in the past with their blow darts!)

Make qualitative plots of (i) the dart’s horizontal position versus
time up until and shortly after the dart hits its target, (ii) the
dart’s horizontal velocity; and (iii) the dart’s horizontal accelera-
tion. In the plot of acceleration, include the small time interval
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between when the dart first makes contact to when it is completely
compressed and stuck. (Hint: ask the same questions as in Problem
A1 if you are stuck.)

A6. Rocket Motion. A rocket lifting off from a launch pad in Florida has
a vertical position given by

y(t) = 70 + 40t + 0.3

during the first moments of takeoff, where y is the height of the rocket
in meters and ¢ is the time in seconds after the rocket clears the support
tower. Assuming the motion of the rocket is purely vertical, determine
both the speed and the acceleration of the rocket at time ¢ = 10s.

A7. Average Velocity: Round Trip of a Blow Dart.

(a)

Fire a blow dart straight up into the air and wait for it to come
back down to its initial position. Question: for the entire flight,
what is the average velocity? (A very quick estimate is fine — if
this question takes you more than 1 or 2 minutes to answer, then
discuss this with a friend or your problem session instructor.)

Now, fire the blow dart at an angle somewhere in the vicinity of
45° (the actual angle isn’t critical). Watch the entire flight, and
comment on the average velocity (both magnitude and direction —
if not zero).

AS8. Vector Addition: Walking Around.

(a)

Using the method of components, add the following vectors, and
determine the z-component and y-component of the total, and the
magnitude and direction of the total: 10 paces at 45°, 12 paces at
90°, 17 paces at —45°, and 10 paces at —135°.

Do the experiment. [We will do the following as a class exercise
during problem session, so you don’t have to do this on your own.]
On a sunny day, pick a starting location in the middle of an open
field or grassy area. (Lamp posts work well.) Choose the direction
that your shadow casts as the 0° direction and imagine a 360° arc
around that direction. Now, walk 10 paces at an angle of 45° (you’ll
be taking your shadow with you, so you’ll be able to see that you
are walking at the correct angle). Then, walk 12 paces at an angle
of 90°, 17 paces at an angle of —45°, and 10 paces at —135°. Where
do you end up relative to your starting location? Does this agree
with your calculation? Write down how you compared your result
with your calculation.
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(¢) Now, do the same experiment again starting from the same initial
location. But this time walk off the vectors in a very different
order, say, 10 paces at an angle of —135°, 17 paces at an angle
of —45°, 12 paces at an angle of 90°, and 10 paces at an angle of
45°. Do you end up in the same place as you did in the previous
experiment? (You should.) Comment on your results.

A9. Hello Kitty. A kitten, who has been napping in a patch of sun, sees
a flying bug and sprints 3m due North. She leaps straight up in the air,
misses the bug, and comes straight back down. She then calmly strolls
5m in a direction 40° S of W, where she spits up a hairball under the
kitchen table, then walks 2m in a direction 30° S of E where she begins
to lick up some spilled milk.

(a) Draw a diagram showing all the displacements of the kitten.

(b) The kitten’s sister was napping with the kitten in the patch of sun.
How far and in what direction should the kitten’s sister walk to go
directly from the patch of sun to the spilled milk?

A10. Love Boat. Juliet is traveling on a fast gondola that is moving at
a constant speed of 10m/s down a canal. Romeo is standing still on
the bank of the canal and watching the gondola go by. To attract his
attention, Juliet throws her ring into the air and catches it as it falls.
Relative to the gondola, the initial velocity of the ring is 15 m/s straight
up. Answer the following questions according to both Juliet and Romeo.
Neglect the effects of air resistance in this problem.

(a) What is the magnitude and direction of the initial velocity of the
ring?

(b) How long is the ring in the air?

(c) What is the horizontal component of displacement of the ring while
it was in the air?

(d) What is the minimum speed of the ring while it is in the air?

(e) What is the acceleration of the ring while it is in the air?

A11. Graphing Forces: The Large Superball.

(a) Continuing from Problem A1l: Toss your large superball straight up
in the air and catch it when it comes back down. Make a qualitative
graph of vertical component of the net force acting on the ball versus
time while in the air (you can neglect air resistance here). Compare
this graph with the ones that you made for Problem Al. What is
the net force acting on the ball at the top of its motion (when it
stops its upward motion and starts falling back down)? How does
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the force at the top of its motion relate to the acceleration (from
Problem A1)?

Now, make a graph of vertical component of the net force acting on
the ball versus time when you include the effects of air resistance
on the ball. In doing this, you’ll need to think about the direction
of the resistive force, as well as how its magnitude depends on its
motion.

A12. Tension: Playing with the Return Ball.

(a)

(b)

Take the “return ball” (the little rubber ball attached to an elastic
string) and hang it straight down. Wait for it to stop moving. Note
the length of the string (you don’t have to measure it). Question:
How does the tension in the string at this moment compare to the
weight mg of the ball? Is T" < mg, does T' = mg, or is T > mg?
Now, add the weight of the round metal spring to the ball. (One
way to do this: put the ball inside in the middle of the spring
and thread the string out between the coils.) Let the system hang
motionless (hold the string with the ball and spring at the bottom
pulling downward). Comment on the length of the elastic string
now. What is the tension in the string now (answer qualitatively
— no numbers)?

Qualitatively, what happens to the length of the string when the
tension increases? What happens to the length of the string when
the tension decreases? What do you think will happen to the string
if the tension goes to zero?

Now let the weight and ball hang straight down. Once the system
is motionless, pull the top of the string upward, accelerating the
system momentarily. What happens to the string’s length? What
does this mean about the tension in the string when the ball is
accelerated upward? Do the same thing, but this time accelerate
the ball/weight downward (quickly lower your hand holding the top
of the string). What happens to the tension in the elastic string
when the ball accelerates downward?

Now, take the yo-yo and hang it straight down from its string.
Accelerate the yo-yo upward and watch what happens. Accelerate
the yo-yo downward and watch what happens. Do you observe
any changes in the string in either case? What do you think is
happening to the tension in the string in both cases? Note that if
you accelerate the yo-yo downward hard enough, the string buckles.
What does this mean about the tension in the string for a large
downward acceleration?

A very common misconception is that tension for a hanging
object is always equivalent to its weight mg. This is not
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true if the object is accelerating!! If this exercise hasn’t made
that point clear, talk with your problem session instructor. Under
what circumstances is the tension in the string equal to its weight?

A13. Components of Forces: Tension in a Horizontal String.

(a) Put a piece of string through the round metal spring. Grab the
ends of the string in your hands, and pull the ends tight until you
think the string is perfectly horizontal with the spring hanging from
the middle. Is the string perfectly horizontal? To find out, do
this right next to a good horizontal edge, such as the bottom/top
edge of a bulletin board or the bottom edge of the top of a flat desk
or bed frame. Describe what you see.

(b) Why is it impossible to get the string perfectly horizontal with some
mass hanging from the center? The words “component” and “force”
should be featured prominently in your answer to this question.

A14. Wondrous Wedge. A 2kg block is placed on a frictionless wedge
that is inclined at an angle of 60° from the horizontal as shown in Fig. 1.
If you release the block, it would slide down the wedge. It turns out that
if you push the wedge to the right with just the right acceleration a, the
block will actually remain stationary with respect to the wedge. In other
words, the block will not have any vertical acceleration, though it does
have the same horizontal acceleration as the wedge.

60° /
= =

Figure 1: Figure for Problem A14.

(a) What acceleration is required for this to occur?

(b) What would happen if the wedge were given an even greater accel-
eration?
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A15. Using Forces to Predict Motion: Dropping a Spring.

(a)

Dangle your “magic spring,” holding it by one end, with the other
end stretched out and hanging (relatively motionless) an inch or two
above your other hand. Don’t do anything yet. Think about
what will happen when you let go of the top of the spring.

Before doing the experiment, predict the order of the following five
events. Write down your prediction:. (i) The top end starts to
move downward; (ii) The bottom end starts to move downward;
(iii) The spring contracts halfway back to its unstretched size; (iv)
The spring contracts all the way back to its unstretched size; (v)
The bottom of the slinky hits your other hand.

Now, once you have made your prediction, let go of the spring and
see what actually happens. You might have to do this a few times
to figure out what the correct order is, or have a friend or two watch
with you. Write down the order of events as you actually observed
them.

Explain the results. In doing so, you might want to draw a force
diagram for the forces acting on the bottom loop of the spring both
before and after the top of the spring is released. (Treat the bottom
loop as a small mass hanging from the rest of the spring.)

A16. Force and Acceleration: Unwinding Yo-Yo.

A17.

(a)

(b)

()

(a)

Wind up your yo-yo, and hold the end of the string (or put your
finger through the loop). Now, let the yo-yo fall out of your hand
and unroll and drop downward (while holding the end of the string
motionless). Observe what happens. Write down your observations.

What can you say about the tension in the string while the yo-yo is
unwinding? Is the tension (i) equal to the weight of the yo-yo; (ii)
less than the weight of the yo-yo but nonzero; or (iii) zero?

Explain how you arrived at your answer. You should be able to
use the results of your observations, a force diagram and a simple
use of Newton’s 2" law to give a clear, definitive answer to the
question. (We'll revisit this example again when we study rotations
later in the semester.)

Circular Motion: Around the World with Your Yo-Yo.

Let the yo-yo hang at the end of the string and (holding the other
end of the string) twirl it in a vertical circle so that it goes all the
way around, being careful not to hit yourself or anyone around you
in the head! You should realize that you have to swing the yo-yo
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sufficiently fast; otherwise, it won’t get all the way around. Now,
watch the string of the yo-yo as you swing it successively slower and
slower until it falls out of the loop.

Determine an expression for the theoretical minimum speed for the
yo-yo at the top of its motion for it to complete the loop. Assume
the string has a length [ and the yo-yo has a mass m and determine
the minimum speed vyp, as a function of [, m, and any fundamental
constants.

Hints: what happens to the string when the yo-yo is going just
slightly too slow to be able to complete the loop? What does this
imply? (The answer to this question is the key to solving this
problem.) Think back to Problem A12.

A18. Friction Acting on Blow Dart.

(a)

The goal of this exercise is to determine the average friction force
acting on a blow dart as it slides across the floor. Find a long,
smooth, carpetless floor where you can fire a blow dart and watch
it slide across the floor and eventually stop. Smooth floors are the
easiest surfaces to work with (the floors in Olin Science work well);
for most other surfaces (e.g., carpeted floors), the dart will tend to
bounce rather than slide. You also might want to crouch down low
and fire at a small, glancing angle.

Determine the average friction force acting on the blow dart as it
slows to a stop. Make whatever measurements you deem relevant,
and use the work-kinetic energy theorem — this exercise is a snap
if you do it this way, and a major pain if you try it any other way.
You can use your previous measurements of the initial speed of the
blow dart once fired, and you might also be interested to know that
the blow darts have a mass of 2.5g and a length of 6 cm, contain
roughly 1.5 x 10?* protons and neutrons, and stick nicely to the
front of your glasses.
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A19. Blow Dart Survivor.

(a)

(b)

()
(d)

Let’s say that you were stranded on a deserted island and a few
dozen Federal Fxpress boxes washed ashore. Let’s say further that
one of the boxes contained a Bandito Blow Gun. In addition to
being delighted at being able to complete your PHYS 211 home-
work, you also realized that you could replace the suction cups
with pointed tips and use this to hunt the birds that flew overhead.
(You may neglect any effects of air resistance when working this
problem.)

Use the Work-Kinetic Energy theorem along with results of previous
measurements to calculate how low a bird would have to fly for you
to have any chance of hitting it.

Verify your results using the principle of conservation of mechanical
energy.

To test your prediction, fire a dart straight up into the air, just
look at its path, and see if your result seems reasonable. You might
even try firing it up near a tree or building whose height you know
approximately.

A20. Losing Mechanical Energy: Superballs.

(a)

Take one of your superballs and release it from rest above a hard
surface such as your desk or uncarpeted floor. Questions: Does it
bounce back up to the height you released it from? Is its mechanical
energy conserved?

Estimate how much mechanical energy is lost in one bounce of the
superball. Make whatever measurements you deem relevant, and
explain your process. Some information that you may find helpful:
the small and large superballs have masses 6.5 and 40.5 g, respec-
tively.

A21. Spring Forward. A woman of mass m rides upward on a spring-
loaded ejector pad of spring constant k. It moves upward from rest
through a distance xy at which point the spring potential energy is zero.
Right then the woman leaves the spring with speed v and flies upward
reaching a maximum height h above her starting position.

(a)
(b)
()

Make a sketch showing her starting position, launch point, and
maximum height.

Write down an expression for the mechanical energy for each posi-
tion.

Equate these expressions to determine the woman’s ejection speed
and maximum height above her initial position in terms of k, xg,
and m.
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A22. Extreme Skiing. Lindsey Vonn has been challenged to test out a
new ski event. A loop of radius R has been installed at the end of a ramp
of height h as shown in Fig. 2. In this event the skier starts essentially
from rest at the top of the ramp and gains enough speed going down the
ramp to complete a circle on the inside of the loop. You will need to use
both force and energy methods in this problem, and you may assume
that the snow is frictionless.

A

NS

Figure 2: Figure for Problem A22.

(a) Draw a force diagram on Lindsey when she is as point A. Which
statement about the magnitude of the normal force (N) of the ramp
on Lindsey at point A is correct?

N =myg N < mg N > mg N=0 not enough info

(b) Draw a force diagram on Lindsey when she is as point B, just
after she has entered the circular loop. Which statement about
the magnitude of the normal force of the loop on Lindsey at B is
correct?

N =mg N < mg N >mg N=0 not enough info

(c¢) Draw a force diagram on Lindsey when she is as point C at the top
of the loop. Which statement about the magnitude of the normal
force of the loop on Lindsey at C is correct?

N =mg N <mg N >mg N=0 not enough info

(d) Determine the minimum speed that Lindsey needs at point C to
stay on the track and make it around the loop.

(e) Determine the minimum height % in terms of the radius R such that
Lindsey can make it around the loop.

(f) What is the maximum magnitude of the force of the ground on
Lindsey’s skis for the minimum height, in terms of her weight?
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A23. Trapped in Space. A spacecraft drifting through the center of a
giant cosmic dust cloud experiences a potential energy that varies with
position as shown in Fig. 3 (d is the distance from the center of the dust
cloud). The spacecraft starts at the center of the dust cloud.

U (kJ)

Figure 3: Figure for Problem A23.

(a) If the spacecraft has a total mechanical energy of E = —4kJ, what
is the farthest distance it could drift from the cloud’s center?

(b) Determine the kinetic energy of the craft when it is 2km from the
cloud center.

(¢) Describe the motion of the spacecraft if it had started at the center
with a mechanical energy of —2.5kJ.

A24. Hopping Popper.

(a) In your kit, there should be a small rubber hemisphere that is re-
ferred to as a “popper.” If you turn it inside out and flex it for a
few seconds, you can lay it on a table before it pops back into its
original shape. When it pops, it will jump up off the table, giving a
nice demonstration of the conversion of potential energy into kinetic
energy.

(b) Using whatever means you see fit, estimate the potential energy (in
J) stored in the popper just before it pops. (There’s a really easy
way to do this.) The diameter of the popper is 1 inch, its mass is
1.8 g, the hole in the center has a diameter of 2mm, and there are
approximately 3300 students at Bucknell.
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A25. Spring Slide Stop. You push a block against a horizontal spring,
compressing the spring by 15 cm. When you release the block, the spring
propels it across a level tabletop. The block stops 75 cm from its release
point. The spring constant is 200 N/m. Determine the magnitude of the
friction force (assumed constant) between the block and the table.

A26. Superball Stack! Take your larger superball and carefully balance
your smaller superball on top of it. Release both from rest, and allow
them to fall perfectly vertically in a line. The large superball should
hit the ground first and then collide (going up) with the small superball
(still on its way down). This requires lots of patience and luck, but if you
get it, the result is incredible! This can be understood by treating the
various collisions as perfectly elastic collisions, which they almost are.

A27. Blow Darts and Superballs. There is nothing that makes a day
more complete than firing a blow dart at a small, defenseless superball.
Before doing this, though, here is some relevant information: the blow
dart has a mass of 2.5g and the superballs have masses 8.5g and 25g.

(a) Now, put your larger superball (the animal ball) at the edge of a
table and softly fire a blow dart directly at it (do it until the blow
dart hits almost straight on). By “softly” we mean don’t blow as
hard as you usually do. If you do this correctly, the dart should
bounce straight back, and the large ball will move forward with
only a very small speed.

(b) Now, the main question: What changes do you have to make such
that the blow dart will continue forward after a head-on collision
with another object? Predict what you need to do, write down
your prediction, and then test out your theory. (In making your
prediction you may assume that the collision is elastic.)

A28. Hogwarts Hijinks. Harry and Hermione are playing in the GraviFree
Room at Hogwarts. Harry (mass 55kg) is floating motionless in the
center of the room. Hermione (mass 45 kg) pushes off from the wall and
approaches Harry at a speed of 6.0m/s. Neglect air resistance in this
problem.

(a) As Hermione moves past Harry, he reaches out and grabs her out-
stretched hand, holding on tightly. Determine the speed with which
Hermione and Harry move after they grab hold of each other.

(b) Harry and Hermione notice Ron giving them a funny look, so they
let go of each other. Determine the speed with which Hermione
moves after they let go.

(c) Determine the speed with which Harry moves after they let go.
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A29. Railing in the Rain. An open railroad car of mass 2 x 10* kg is rolling
without friction along a level track at 5m/s when it starts to rain. After
the car has collected 2000 kg of water, it stops raining. Assume that the
rain fell perfectly vertically.

(a) What is the rail-car’s speed after it stops raining?

(b) After the rain has stopped, a hole in the bottom of the rail-car is
unplugged, and the rain water begins to leak out of the hole at a
rate of 5kg/s. What is the speed of the rail-car after half the rain
water has leaked out?

(¢) What is the speed after all the rain water has leaked out?

A30. Relative Velocities (Classical). A typical person walks with a speed
of about 2m/s relative to the ground. While you are walking between
classes, watch other students who happen to be walking in the same
and opposite direction as you, and answer the questions in the following
parts.

(a) Choose a student walking in the same direction as you with the
same approximate speed. Note how far away that person is from
you. Then, after the two of you have walked for a few seconds, note
again how far that person is from you. Has the distance between
the two of you increased, decreased or stayed roughly the same?
Assuming that you are both walking at a speed of 2m/s relative to
the ground, what does your previous answer imply about the speed
of the other person as measured in your reference frame?

(b) Do the same thing for a student walking in the opposite direction
as you. Answer the same questions as in part a).

(c) If you happen to see someone running to class, but going in the
same direction as you, ask yourself the same questions as in part

a).

A31. Measuring the Length of a Moving Object, Take 1. Measuring
the length of an object that is at rest with respect to you is pretty easy:
one method is to take a ruler of some kind, hold it up to the object, and
note where each end of the object is with respect to the ruler.

(a) What difficulties arise if you try to measure the length of an object
that is moving with respect to you using the technique described
above?

(b) Other methods need to be developed to measure the length of a
moving object. We’ll have you try an approach that employs a
group of people. [We will do the following as a class exercise dur-
ing problem session, so you won’t have to gather a group of your
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own.] Go outside, and line up in a row, parallel to a street with
some automobile traffic. (Please stand a safe distance away from
the street!). Stand so that there is approximately equal distance
between you and your nearest neighbors

Your instructor will stand across the street. When a car comes by,
your instructor will yell “Now!”. If the front of the car is directly
in front of you, raise your hand and keep it raised. If the back
of the car is directly in front of you, raise your hand and keep
it raised. (By yelling “Now!” your instructor has basically syn-
chronized your clocks, so that you are making your measurements
— i.e., raising your hand — simultaneously. You’ll see in Problem
A33 that to make this measurement even more carefully, we would
have to come up with a better method of synchronization. We’ll
discuss some thorny issues involving simultaneity in an upcoming
lecture.)

Now, measure the distance between people who have their hand
raised. How is this distance related to the length of the car? Does
it matter how fast the car is going in using this technique?

A32. Measuring the Length of a Moving Object, Take 2. In problem

A31

you measured the length of a moving object using several people

and synchronization. In this problem, you will develop a technique that
you could use on your own.

(a)

Assume that you know the velocity of the car (say the car is going
the speed limit), and that your available tools are a ruler and a
clock. Figure out a method to determine the length of the moving
car. Describe what you would do and what you would measure. and
how you would use the results of your measurement to determine
the length.

You likely measured a time interval and/or a distance. Think how
the driver of the car views the situation, especially if the speed
were relativistic (say if the car were going at 0.8¢ relative to you).
Would the driver of the car agree with your measurement of the time
interval and/or distance? Would she think your measurements are
too high? too low? correct?
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Synchronization, Simultaneity and Spacetime Diagrams.

(a) Grab a friend or roommate (it doesn’t have to be someone taking
PHYS 211). Stand on opposite sides of a room or a long hallway
(the larger the separation distance, the better). Throw a ball to
your friend (or have that person throw the ball to you). Draw a
qualitative spacetime diagram of this situation, showing world lines
for you, your friend, and the ball.

(b) Your next goal is to have both of you clap your hands at precisely
the same time, but you have to keep your eyes closed while doing it.
Here’s an approach that you might try: you could say (loudly), “On
the count of three, we’ll both clap our hands. One, two, THREE!”
Go ahead and try this, and then comment on inaccuracies in this
method (i.e., why doesn’t this work?). Draw a spacetime diagram
to support the argument.

(¢) See if you can figure out a way that will result in you and your friend
clapping at the same time. Write down the method, and draw a
spacetime diagram that demonstrates that this is a good approach.

A34. Life in a Relativistic World, Part I. A typical person walks with a

A35.

speed of about 3 mph relative to the ground. For this problem, imagine
that the speed of light were actually 4 mph rather than 3.0 x 10%m/s.

Walk across campus, perhaps on your way to or from class or going
to dinner. Choose a time when there is a lot of activity around you
(cars moving around, other people walking around, etc). While you are
walking, watch everything around you. Note what you see, what you
feel, whatever you experience (when you are moving, waiting to cross a
street, etc.), and think about how any of these things would be different
if the speed of light were 4mph. Write a couple of paragraphs
summarizing your thoughts. And feel free to discuss this with other
people in the class. (Some things to think about in particular: length
contraction, time dilation, and simultaneity — all of these things would
be very noticeable in this hypothetical scenario.)

If you really think about a lot of the things around, you should come to
the conclusion that if ¢ were really 4 mph, it would truly be a whacked-
out, psychedelic, something-out-of-a-Salvador-Dali-painting experience.

The Real Potential of a Superball. Pick up your largest superball
and just stare at it for a little while. Does this look like it contains a
lot of energy? Now, estimate its mass (or alternately look back at the
Problem A27 where the mass is given) and determine the rest energy of
the superball (in Joules). Now, consider that an atomic bomb releases
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10 to 10'5J of energy; consider also that a typical household uses
about 10'°J of energy per year. Stare at your little ball again. Write a
sentence or two about your thoughts. (Feel free to post your thoughts on
the “Questions” page at the course web-site if you want to share them.)

A36. Life in a Relativistic World, Part II. Let’s think a little more about
what it would be like walking across campus if the speed of light were
4mph rather than 3 x 108m/s. You've already thought about time di-
lation, length contraction and simultaneity in problem A34. Now, think
about what the relationship E = mc?/1/1 — v%/c? would mean in a rel-

ativistic world.

(a) If the speed of light were 4 mph, how much kinetic energy would
be involved in walking at a speed of 3.5 mph? (Use your own body
mass in these estimates.) How much kinetic energy would you have
walking at 3.8 mph? How do you think you would feel as you start
trying to walk faster and faster, past 3.0 mph, past 3.5 mph, past
3.8 mph, past 3.9mph, ...7

(b) What do you think might happen if you collided with another per-
son if you were both walking with a speed of 3.8 mph but in opposite
directions?

A37. Life in a Really Relativistic World. = Common misconceptions
about relativity abound. You'll hear people say that relativity states
that “if you are on a ship traveling close to the speed of light, your mass
increases to infinity, you shrink down to zero size, and you never age.”
Statements like this have led people to think that life would be very
strange on such a spaceship. We want you to experience what it really
would be like to be on such a spaceship.

So, go ahead and do this experiment. Hop on a spaceship that is traveling
at a speed of at least 0.8c¢ relative to some reference frame. Before you
start saying that we’ve completely cracked up, there is a spaceship that
everyone in this class has access to that meets this requirement. (Hint:
the name of the ship starts with the letter £ and its name rhymes with
birth, and it is currently traveling at a speeds of greater than 0.9¢ relative
to distant galaxies and quasars.)

Question: Do you feel at all strange being on such a ship? Write a
sentence or two of your thoughts about this. (Feel free to post your
thoughts on the “Questions” page at the course web-site if you want to
share them.)
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A38. Photon Absorption An elementary particle has a mass of
1125 MeV/c?, and is motionless in some reference frame. A photon with
momentum 750 MeV /¢ strikes the particle and is absorbed, leaving an
“excited” particle that is recoiling and nothing else. Determine the mass
and recoil velocity of the excited particle after the interaction.

A39. Let There Be Light. Particle A of mass 400 MeV/c? collides with
the stationary particle B of mass 350 MeV /c?. The result of this collision
is a single particle C at rest, and a 300 MeV photon. Determine the mass
of particle C.

A40. Spider-Balls and Fidget Spinners We can take advantage of the
fidget spinners and the animal in your larger superball to comment on
the relationship between angular velocity and linear velocity.

(a) Take your fidget spinner and spin it. Do the same with the large
superball. (For the superball, you can either rotate it in your hand,
or toss it gently with a little rotation — whichever enables you to
see the object spinning easiest.) For both the fidget spinner and
the animal-ball, try rotating them slowly and then quickly. What
can you say about the motion of the middle portion of the object,
as opposed to the motion of the part of the object farthest from the
middle? How does your answer to the previous question relate to
the equation v = rw for tangential speed?

(b) Now, drop the superball straight down while spinning it very rapidly
about a horizontal axis. The best way to do this is to use two hands
to get it spinning as fast as you can while releasing the ball. What
happens when the ball bounces? Specifically, does it bounce straight
up? Why not? (You'll want to use a diagram and Newton’s 2°d
and 3™ laws to support your argument.) Also, what happens to the
angular velocity of the superball after it bounces? Explain why this
happens. (Consider the torque acting on the ball when it bounces
on the floor.)

(c¢) (Optional) If you are good at spinning the ball, try this: toss the
ball slightly away from you, but spinning with the top toward you.
If you do this well, you can get the ball to bounce back and forth
on the ground. Explain why this happens.

AA41. Yo-yos (revisited) with Rotations. We're going to repeat Problem
A16, but this time we’re going to be quantitative and take rotation into
account.

(a) Count how many turns of the string are required to wind up the
yo-yo all the way. From this, calculate A8 for the yo-yo to unwind



ADDITIONAL PROBLEMS 19

completely (in radians). Now, holding the end of the string, let the
yo-yo unwind all the way, and estimate the time for it to reach the
bottom (within a couple of tenths of a second). Since the angular
acceleration is constant during this process, you should be able
to take two integrals of a to find that Af = at?/2. From this
information, determine the angular acceleration of the yo-yo as it
falls.

(b) Now estimate the average radius of the spool (i.e., the average dis-
tance of the point-of-contact of the string from the center of the
yo-yo), and use this information to estimate the linear acceleration
of the yo-yo during its fall. Then, use this information (along with
a force diagram and Newton’s second law) to determine the tension
in the string while the yo-yo is falling. Note: the mass of the yo-yo
is 52 g, its total thickness is 3.5 cm, and it fits nicely in your pocket.

(c) Is your result from part (b) for the tension consistent with the
qualitative answer from Problem A167

A42. As the Ball Turns. A solid 1.4kg ball with diameter 15 cm rotates
with an angular velocity of 70 revolutions per minute.

(a) Determine the kinetic energy of the solid ball.

(b) If the ball had the same mass and diameter, but all the mass was at
the outer surface of the ball (in other words, the ball were hollow),
would the ball have more or less kinetic energy than you calculated
in part a)? Assume this hollow ball has the same angular speed.

(c) Back to the rotating solid ball again. If you give the ball an addi-
tional 0.2J of rotational kinetic energy, determine the solid ball’s
new angular speed.

A43. Yo-yos, mechanical energy, and angular momentum.

(a) Unwind the yo-yo and rotate it in a vertical circle at the end of
its string. Once it is going, allow the yo-yo string to wrap around
your arm — the result should be that the yo-yo spirals inward until
all the string is wrapped around your arm. Do this a few times
and watch the yo-yo as it spirals inward. Do you think the yo-yo
is speeding up, slowing down, or going at basically the same speed
during this process? (Watch the yo-yo very carefully here — your
eyes can easily trick you.)

(b) Now, think about this process both from a perspective of mechan-
ical energy and angular momentum. Which of these quantities do
you think are conserved during this process (or do you think that
neither or both are conserved)? Justify your answers: for angular
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momentum, you’ll need to show either that torque acting on the
yo-yo is zero or non-zero, and for energy, you'll need to explain ei-
ther that work is or is not being done on the yo-yo. Based on these
answers, should the yo-yo be speeding up, slowing down or basically
going at the same speed while spiraling inward?

(¢) Now do the same thing again, but this time, instead of letting the
string wind around your arm, thread the string through a PVC tube
(which we’ll provide in problem session) and pull the string through
the tube to pull the yo-yo inward. Answer all the same questions
that you did in parts a) and b).

A44. Yo-yos and torque.

(a) Take a partially-wound (i.e., partially-unwound) yo-yo and place it
on a level surface such that it could roll if pushed or pulled. Now,
predict which way it will roll if you pull the string straight up.
(Justify your prediction with diagrams.) Try the experiment —
were you correct? If not, justify what actually happened.

(b) Now, do this again, but this time let the string go over the top of the
yo-yo and pull it parallel to the table. Again, first make a prediction
about which direction the yo-yo will move (and justify it), then try
the experiment. Again, if you were not correct in your prediction,
justify what actually happened with diagrams and Newton’s laws.

(¢) Finally, predict which way the yo-yo will move if the string goes
underneath the yo-yo, and you pull it parallel to the table. (Again,
justify your prediction with a diagram. Try the experiment. Were
you correct? Again, if you were not, then justify what you actually
saw.
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A45. When Wheels Collide. Two solid wheels of identical mass but differ-
ent radii (R and 2R) are spinning on the same axle (on very smooth bear-
ings). The wheels are spinning in opposite directions, but with the same
angular speed w;, as shown in Fig. 4. The two wheels are slowly brought
together, and the resulting frictional interaction between the touching
surfaces eventually brings the wheels to a common angular speed wy.

(a)
(b)

Figure 4: Figure for Problem A45.

Determine wy in terms of w;.

Are the wheels now rotating in the original rotation direction of the
larger or the smaller wheel?

A47. Dunking Birds and the Ideal Gas Law.

(a)

We're not actually going to use the dunking bird in its intended
purpose here (don’t worry — that will come). Instead, grab the
Bird’s bottom in the palm of your hand and wrap your hand around
it. Presumably, if your hand is at normal body temperature (37° C),
the fluid in the Bird will rise up toward the head, leaving a larger
volume of gas than when you started.

Estimate the volume of the gas in the Bird’s bottom before and after
you warmed it up with your hand. Actually, you really only need
to approximate the ratio of the two volumes Viger/Vhefore- NOW,
determine the ratio of the temperature of your hand to the temper-
ature of the air, using estimates of the room temperature and your
body temperature. (What units are you using for temperature?)
Using the ideal gas law, determine if the change in the volume is
consistent with the change in the temperature. (Show all your work
here.)
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(¢c) What else do you think is going on inside the Bird? We're not

expecting a complete answer — this is more of a set-up to help
motivate the next class. But you should be able to use the ideal gas
law to make some statements about what else is going on inside the
Bird.

A48. Pressure and Force. It is fairly straightforward to estimate the
pressure inside a blow dart’s suction cup when it is sticking to something.
First, we’ll look at it qualitatively, then put some numbers in.

(a)

Wet the suction cup on one of your darts and press it onto a flat,
smooth surface so that it sticks. (It’s best to have the dart wet,
because this will keep air from leaking in around the suction cup.)
Pull on the dart and note how much force is necessary to pull the
dart off the surface. You don’t have to be quantitative here; simply
comment on how difficult it is to pull off.

While you are pulling on the dart, what is causing the force that
pulls (pushes) the dart back onto the surface? Of course, this is due
to the pressure difference between the inside and the outside of the
suction cup, but what physically is causing the force? (Refer to the
kinetic theory of gases to answer this.)

Now, let’s do this semi-quantitatively. If you stuck the dart to
the underside of a smooth surface, you could hang about 1kg of
mass from the dart without it coming off. Based on this, you can
determine the maximum force (in N) that the dart can withstand
before coming off the surface. And once you have the maximum
weight that it can hold, use the definition of pressure (in terms of
force and area) to estimate the pressure within the suction cup.
Note: the suction cup has a diameter of about 1.8 cm. (You should
estimate the pressure difference between the air and the inside of
the cup first, then you can get the absolute pressure inside the cup.)

If there were a perfect vacuum inside the suction cup, what would
be the maximum weight that it could hold?
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A49. Balloons and Bottles.

(a)

Do the following experiment: Get a glass drink container — one
of those juice/cranberry bottles will work, but a taller/deeper glass
drink container is better. (You might be able to pluck something
out of one of the recycling bins if needed.) You'll need to stretch a
balloon across the opening of the jar, so try that out to make sure
you can do it, then take the balloon off. Then, boil a small amount
of water (you can use a microwave if you want, but make sure that
the water is really hot and steaming). Pour a small amount of the
boiling water into the jar (cover only the bottom cm or so). If the
water is hot enough, there should be a noticeable amount of steam
coming out of it. Then, stretch the balloon over the mouth of the
jar and then watch the system as things slowly cool down.

Describe what happens, and explain why it happens. In particular,
comment on any condensation of the steam that you see on the
inside of the container. Is this condensation important as far as the
behavior of the balloon is concerned?

A50. Using Phase Transitions to Cool a Drink. You’ll need to do this
at lunch or dinner, or somewhere that you have access to ice.

(a)

(b)

Get three glasses or cups. Fill one glass (let’s call it glass A) with a
mixture of ice and water (plenty of ice), and fill the other two glasses
each halfway full with room temperature water. Let the ice/water
mixture in glass A sit for a few minutes: this will ensure that both
the ice and the water in the glass are at temperature 0° C.

Next, you are going to take out a fair amount of 0° C ice from glass
A (a spoon is a convenient way to do this) and dump it into glass
B, one of the half-filled room-temperature glasses. Then pour an
equivalent amount of 0° C water from glass A into glass C, the other
half-filled glass. The idea is to compare the cooling effects of 0° C
ice compared to 0° C water.

Before doing the experiment predict whether glass B and glass C
should be equally cooled, or if not, which will be cooler. Write down
your prediction.

Now, go ahead and do the experiment. Record the results in your
notes. Is the result what you expected? Use heat flow arguments
to explain why you obtained this result.

A51. The Dunking Bird, revisited. In Problem A47, you should have
found that the temperature change alone wasn’t enough to cause the
volume change and the resulting movement of the fluid up into the Bird’s
head — there must have been a significant change in N, the number of
gas molecules in the Bird.
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Explain how N is increasing in the Bird’s bottom when you heat it
with your hand. Explain also how N decreases in the head when
the head is cooled. What about the fluid inside the Bird — why do
you think the Dunking Bird is filled with methylene chloride instead
of simply dyed water?

Now, how is the head of the Bird cooled during its normal dunking
operation? Does the water in the glass have to be cooler than the
room temperature? Try the following experiment: try using water
in the glass that is measured to be the same as room temperature
or better yet, heat up the water to be several degrees above room
temperature, and dip the Bird’s head in this warm water. Ques-
tion: does the Bird still dunk? (The result might surprise you.)
So, how does the Bird’s head cool?

A Dunking Bird with a wet head is comparable in many respects
to a person who is sweating on a hot day. Based on what you know
about phase transitions (melting, vaporization, etc.), explain why
it is necessary for a person to sweat on a hot day. Why doesn’t a
person sweat as much on cooler days?

A52. Energy Stored in a Balloon.

(a)

When you blow up a balloon, you are clearly doing work on the
balloon. Alternatively, you can say that the gas in the expanding
balloon is doing work. And this work goes into potential energy.
Question: where is that energy “stored”?

In this problem, we’re going to estimate that stored energy using
W = [pdV. Well use the approximation that the pressure is
almost constant (we’ll estimate an average pressure) so that W =
pAV. And since the air outside the balloon is doing negative work
on the balloon while it expands, and we want the net work done by
the gas, you can use the gauge pressure to get the net work done
by the air while the balloon expands.

To estimate the gauge pressure, you need to attach the balloon to
the end of your flexible hose with a rubber band, blow the balloon up
half-way, then make sure to pinch off that end of the balloon. Now,
get some water into the tube (still holding the balloon end pinched
off), and then hold up the tube (in a U-shape, with the balloon at
one end and the open end of the tube at the other). Finally, release
the balloon such that the gauge pressure of the balloon pushes the
water in the tube.

Use this technique to estimate the average gauge pressure (see prob-
lem A?? for a refresher if you have forgotten), and estimate the
change in volume when the balloon is fully inflated. From this, you
should be able to estimate the energy stored in the balloon.
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A53. The Thermodynamics of Blow Darts. Let’s think about what
happens when you fire a blow dart. We’ll use the results from problem
A?? (in which you determined the gauge pressure that your lungs can
produce) to estimate the ideal maximum speed that you could achieve
when firing a blow dart.

(a) When you blow on the dart, the pressure piy,g from your lungs
pushes the dart down the tube while atmospheric pressure py pushes
the dart the other way. Draw a quick sketch of the dart, and draw
arrows corresponding to the forces Fing and Fuipy on the dart. Con-
sidering that the dart has a cross-sectional area A, what is the net
force acting on the dart when you fire? Re-write this result in terms
of the gauge pressure for your lungs.

(b) Now, use the result from A?? and the fact that the dart has a
diameter of about 1.8 ¢cm to estimate the net force acting on the dart
when you blow. Now, considering that the active part of the blow
gun is about 50 cm long, estimate the work done on the dart when
firing. (Note: you'd get the same result by using W = Pyayge AV.)
Finally, use the work to predict the exit speed for the dart when
you fire.

(c) The answer that you get here might differ significantly from what
you measured in Problem A4. Why do you suppose these two results
could be so different? Do not use “human error” anywhere in your
response!

A54. Path Matters. Omne mole of an ideal monatomic gas is heated from
300K to 600 K.

(a) If the gas is held at constant volume, find the change in the gas’s
internal energy, the work done by the gas, and the heat added to
the gas during this process.

(b) If the gas is held at constant pressure, find the change in the gas’s
internal energy, the work done by the gas, and the heat added to
the gas during this process.
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A55. Some Cycle. In the cycle shown below, 1.0 mole of a monatomic

ideal gas is initially at a pressure of p4 = 100kPa and a temperature of

Ty = 0°C. The gas is heated at constant volume to Tp = 150° C and is

then expanded adiabatically until its pressure is back to pc = 100 kPa.

Finally, the gas is compressed at constant pressure until it is back to its
original state A. Find

(a) the temperature T after the adiabatic expansion,

(b)

)

)

the heat entering or leaving the system during each process,

(c) the efficiency of this cycle, and

(d) the efficiency of a Carnot cycle operating between the temperature
extremes of this cycle.

p (kPa)
B
pPB T
Adiabatic
A
100 [
A
1 1
V4 Vo V (L)

Figure 5: Figure for Problem A55.
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A56. Dunking Birds as Heat Engines. First, get your Dunking Bird
going. You can actually operate it one of two different ways:

(D)

(IT)

(b)
()

You can get the head wet and then just put it on a table. If the
Bird is properly balanced (you may have to slide the metal piece
up or down), then it should start going.

You could place the Bird on top of a TV or computer monitor and
let the heat from that device warm the Bird’s bottom. (Warning:
Be careful if you do it this way: people have wound up with blue or
red stained monitors and desks as well as having to clean up broken
glass!)

If the Dunking Bird is being powered by heating of its bottom (i.e.,
Method IT above), the gas/fluid in the bottom will undergo several
steps. (The steps are actually continuous, but we’ll break them
up to make this easier to plot.) (i) As the bottom heats up, the
pressure of the gas inside increases. (Do you remember why? It
isn’t just the change in temperature.) (ii) After the pressure has
increased, the fluid is forced out of the bottom, and the volume of
gas in the bottom increases. (iii) The Bird tips over and the air in
the bottom and the air in the head are connected, causing a quick
drop in the pressure of the gas in the bottom down to its initial
value. (iv) The Bird stands up again, and the fluid runs down into
the bottom, decreasing the volume of gas in there.

Plot the sequence described above on a P-V diagram. Do you have
a cyclic process here? Show the work for the engine cycle on your
P-V diagram.

Repeat part (a), but for Method I (where the Bird’s head is cooled
by evaporation).

What is the hot reservoir for this engine? What is the cold reservoir?
What is the work done by the Bird (in words)? Draw an engine
diagram for the Bird.

A57. Entropy and the Second Law.

(a)

(b)

Scatter at least 10 coins over a large surface area. Then, carefully
pick them all up and stack them into a neat pile. Has the entropy of
the coins increased, decreased or stayed the same? Use arguments
based on probability to answer this question. (e.g., “It is more
probable that you'd ...”).

Is your answer consistent with the Second Law of Thermodynamics?
(The answer must, of course, be yes, but you might have to think
a bit to figure out how to reconcile this with the Second Law.)
Explain your reasoning.
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A58. Macrostates and Microstates.  This problem gives you practice
with the idea of macrostates vs. microstates, in a different context than
that provided in the reading. Let’s think about macrostates vs. mi-
crostates for the rolling of two six-sided dice.

When you roll two six-sided dice, each die can show a 1 through 6.
The SUM of the numbers showing on the two dice is an integer from 2
through 12. That SUM is the macrostate. The microstate is the specific
combination that resulted in that macrostate. So for example, if you
rolled two six-sided dice, and the total of the two dice was an 8, that
total could have been obtained a number of different ways: (2 and 6), or
(3 and 5), etc. In this example, the MACROSTATE is the sum 8, and
some of the MICROSTATES associated with that macrostate are (2 and
6) or (3 and 5).

(a) Consider all of the possible macrostates for this system of two six-
sided dice. For each macrostate, write down all the possible mi-
crostates associated with that macrostate. Assume that the dice are
distinguishable from each other, which means that there is a differ-
ence between (2 and 6) or (6 and 2). Which macrostates have the
most microstates associated with it /them? Which macrostates have
the fewest microstates associated with it/them? Use this to argue
which macrostates are the most probable, and which macrostates
are the least probable.

(b) Now, roll two six-sided dice 10 times, and record the macrostates
that you observe. (If you don’t have access to dice, you'll be able to
do this part in problem session.) Does your experimental evidence
support your predictions from part (a); in other words, was the most
probable macrostate clearly rolled more than the least probable
macrostate? You may be surprised by your results. What do you
think you need to do in order for the predictions to more accurately
model the results of the experiment? We’'ll collect data from the
entire class for the number of times your most probable macrostate
came up, and the number of times your least probable macrostate
came up.
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A59. Playing with the Period of Oscillation.

(a)

Take your round metal spring, hold it by one end, and let the other
end oscillate in the vertical direction. Determine the period of oscil-
lation using the following technique: find the approximate time for
5 complete periods and divide by 5. Record the period of oscillation
for the round metal spring. What is the angular frequency of the
oscillator?

Now, take your round metal spring and jam your return ball into
one end of the spring (as you did in problem A2.) (Note: you may
want to increase the mass even more). Hold the spring by one end,
letting the end with the ball wedged in dangle freely so that it can
oscillate in the vertical direction. Predict whether the period of
oscillation will be larger than, smaller than, or equal to the period
of oscillation you obtained in part (a). Justify your prediction.
Try the experiment — were you correct? If not, explain what
actually happened.

A60. Circular Motion Versus Oscillatory Motion.

(a)

Have a partner hold one end of the round metal spring and rotate
it so that the other end makes a horizontal circle. Now, you should
stand back a couple of meters, and with one eye closed, watch the
rotating end of the spring from the side so that the motion appears
as though it is on a line. If you view it from an appropriate angle,
the motion should look exactly the same as if your friend were
simply oscillating the spring back and forth along a line.

To develop this further, ask your friend to go ahead and swing the
spring back and forth instead of in a circle. If you have one eye
closed and if you are looking at it from the best angle, from your
vantage point, it will look the same as if it were going in a circle.
And to develop this even more, have your friend either rotate the
spring in a circle or oscillate it back and forth while you try to
figure out which kind of motion the spring is following. Treat it
as a challenge — your friend should try to fool you into thinking
it is straight line motion when it is actually going in a circle or
vice-versa.

The point of this experience is to help clarify the idea that oscillatory
motion can be thought of as one component of circular motion. This
idea will be very important when we talk about waves and interference
in PHYS 212.
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A61. Resonance

(a)

We're going to map out (approximately) a simple resonance curve
for your round metal spring. You may use just the round metal
spring, or you may use the round metal spring with the return ball
jammed in one end. Just make sure you indicate what you are doing.
In part (b) you will hold the spring by one end and let the other end
dangle, and then oscillate your wrist at varying frequencies. Before
doing this, draw a sketch of what you would expect a resonance
curve (amplitude of response versus driving frequency) would look
like for the spring, assuming very little damping. Based on your
results from problem A59, what would you expect the frequency to
be for the peak of this curve? Write that frequency down.

Now, hold the spring by one end and let the other end dangle.
Wait until any residual oscillations damp out, then oscillate your
wrist very slightly (amplitude of only a cm or less) at a frequency
significantly smaller than the one that you predicted for the peak of
the curve. (Write down in your notes an approximation of what that
frequency is.) Do this for a few periods of oscillation, and comment
on how the motion of the bottom end of the spring relates to the
motion of your hand during this procedure.

Now, repeat this again for a frequency that is significantly higher
than the predicted resonance frequency, and comment on the re-
sults. Finally, repeat this again for a forcing frequency close to
your predicted resonant frequency. Comment on your observations.

Overall, do you observe resonant behavior? Explain how your ob-
servations are consistent with ideas that we have discussed about
resonance.
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A62.

A63.

A64.

How Attractive Are You? We often take Newton’s Universal Law
of Gravitation for granted, but it was far from obvious in Newton’s era
that every object attracted every other object in the universe. Why,
for instance, don’t we feel a gravitational attraction every time we come
near another person or near another object?

(a) The experience part: get very close to another person or to some
other object that is close to your mass. (It doesn’t have to be
another person — you can stand close to a wall for the experience
part.) Now, try to see if you can feel any gravitational attraction.
In particular, can you feel the attraction getting stronger as you get
closer? Briefly comment (no more than one or two sentences) on
what you feel.

(b) Based on this experience, do you think Newton’s law of gravitation
is obvious?

(¢) Now, let’s put some numbers on this experience. Estimate your
mass and the mass of the other person or object, and estimate
the smallest separation between the two of you (estimate the dis-
tance between the center of you and the center of the other per-
son/object). Throw these numbers into Newton’s law of gravitation
to come up with a numerical estimate of the gravitational attraction
that you experienced. Is this a force that is strong enough to be
noticeable? (You might want to compare this force with the weight
of some objects.)

Orbits in a Non-Keplerian Solar System, Part I. Suppose that
the gravitational force of attraction depended not on 1/r2, but rather
was proportional to the distance between the two masses (like the force
due to a stretched spring). In a planetary system that felt this different
form of gravity, what would be the relationship between the period of a
planet and its orbital radius? Assume circular orbits.

Orbits in a Non-Keplerian Solar System, Part IT This experience
problem goes hand-in-hand with the previous problem, problem A63. In
that problem, you work out how the period of a planet’s orbit depends
on radius if the force of attraction grew linearly with distance, rather
than dropping off as 1/r2. It so happens that this is a very easy thing
to test with your toy kit.

(a) Take your round metal spring, hold it by one end, and twirl it slowly
so that the other end makes a circle in a horizontal plane (similar to
what you did in problem A60). Determine the period of revolution
using the following technique: find the time for 10 complete periods
and divide by 10. Now, do it again, but this time twirl it harder
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so that it stretches out a lot, resulting in a circle of significantly
larger radius. Again, determine the period (time for 10 revolutions
divided by 10).

Do your results agree with your prediction from problem A637

Specifically, when you increase the radius (by twirling faster), does

the period grow linearly with radius, drop as 1/r, remain the same,
7

A65. Curved Space.

(a)

Blow up and tie off a balloon. You are going to draw a circle on
the balloon with a radius of 10 cm as measured by a 2-dimensional
being that lived on this surface and wasn’t aware that the surface
was curved in a 3-dimensional world. Mark a point on the balloon
that will act as the center of the circle. Now, mark off a 10cm
portion of the string in your toy kit (or you can use your yo-yo
string or dental floss). Place one of end of that 10cm segment
at the marked point on the balloon and use the other end of the
10 cm segment like a drawing compass, pulling the string so that it
is tight against the surface of the balloon and swinging it around
in a circle, tracing out that circle on the balloon as you go. The
net result should be a reasonably clean circle with a 2-dimensional
radius rop (along the surface of the balloon) of 10 cm.

Now, measure the circumference of the circle. You can do this
by taking the yo-yo string (or some other string) and wrapping it
around the balloon until it lines up with the circle that you have
just drawn. Then, straighten out the string and measure its length.

Is the circumference equal to 2mrop? Your result shouldn’t bother
you because you happen to live in a three-dimensional world, and
you know therefore that the real center of the circle that you just
drew is inside the balloon, so the real radius isn’t 5 cm. But if you
couldn’t comprehend a third dimension and lived on the surface of
the sphere, would you find the result surprising?

Now, imagine going outward a certain well-defined distance R from
the center of our sun, and drawing a circle all the way around the
sun with that distance as the radius. Would you be surprised if the
circumference of that circle were less than 2w R? (This is, in fact,
what you would find if you could do this measurement without being
burned up.)
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A66. What if the Pulley Isn’t Massless? Two objects of masses m; and
mg, with mg > my, are connected by a string of negligible mass that
passes over a pulley, as shown. The pulley is a uniform disk with mass
mga and radius R and is free to rotate without friction. The string does
not slip on the pulley. Find the acceleration of the mass ms.

(Note: then tension in the string for mass 1 is not the same as the
tension in the string for mass 2, since the pulley has a non-zero rotational
inertial.)

ms3

Figure 6: Figure for Problem A66.

A67. Another Massive Pulley Problem.

Two objects, each of mass m, are connected by a string of negligible
mass that passes over a pulley, as shown. The surface is frictionless.
The pulley is a uniform disk with radius R and mass m,, and is free to
rotate without friction. The string does not slip on the pulley. Find the
acceleration of the hanging object.

R

m

Figure 7: Figure for Problem AG67.
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A68. Earth’s Gravity at the Moon.
(a) Calculate the magnitude g of the Earth’s gravitational field at the
location of the Moon.

(b) Use your result from part (a) to calculate the gravitational force of
the Earth on the Moon.

(c) Use your result from part (a) to calculate the gravitational force of
the Farth on a 70 kg astronaut standing on the surface of the Moon.

A69. Gravitational Field via Integration I. A rod lies on the z-axis with
one end at z = L1 and the other end at x = Lo. The rod is not uniform,
and its mass per unit length varies as A = Cz, where C is a constant.

(a) Determine the total mass of the rod.

(b) Find the gravitational field at the origin due to the rod.

Ly

Lo

Figure 8: Figure for Problem A69.

A70. Gravitational Fields. Determine the magnitude g of the gravita-
tional field

(a) on the surface of the Moon (due to the Moon), and
(b) at a point 2000 km above the Earth’s surface (due to the Earth).

AT1. Gravitational Field via Integration II A uniform rod of mass M
and length L lies along the z-axis with its center at the origin. Determine
the gravitational field at the point x = d, where d > L/2.

AT2. Static Friction Refer to Figure 5.27 in Wolfson (4" ed.). Let’s say
that the guy there is pulling on the rope, but the trunk is completely
motionless (and remains that way — it doesn’t budge). Calculate the
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magnitude of the friction force acting on the trunk in terms of the mass
m of the trunk, the tension 7" in the rope, the angle 6 between the rope
and the horizontal, the gravitational acceleration g, and the mass M ; of
the planet Jupiter.

AT73. Work, Kinetic Energy, and Dissipation You throw a 150 g baseball
straight down from a sixth-story window 16 m above the ground. The
initial downward speed is 7.2m/s.

(a) Calculate the work that gravity does on the ball as it falls to the
ground.

(b) Assuming that air resistance does —12J of work on the ball, use
the work-kinetic energy theorem to calculate the speed of the ball
when it hits the ground.

AT74. Recoil on Ice A 42kg child stands at rest on the surface of a frozen
pond (i.e., a frictionless surface). She catches a 1.1kg ball moving hori-

zontally at 9.5m/s. Calculate her speed immediately after catching the
ball.

AT75. Angular Momentum of Point Masses The figure shows 3 objects
each with mass 2.0 kg, and each moving with a speed of 4.5m/s. But the
objects are traveling in different directions, each denoted by an arrow.
Determine the angular momentum about the origin for each of objects

A, B and C.
y (m)
C B
s
3.5m 30 45°
Origin A t (m)
3.5 m

Figure 9: Figure for Problem A75.
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AT76. Molecular Descriptions Answer each part of this question by con-
sidering the behavior of individual molecules.

(a) Considering the motion of individual molecules in a solid, what is
the difference between a colder solid and a warmer solid?

(b) What is the difference between a solid just below its melting temper-
ature and a liquid just above this melting temperature? Again, an-
swer this question by discussing the behavior of individual molecules
in the solid/liquid.

(c) What is the difference between a cooler liquid and a hotter liquid?

(d) What is the difference between a liquid just below the boiling tem-
perature and a gas just above this boiling temperature?

(e) What is the difference between a cooler gas and a hotter gas?

AT7. Triple Star System Consider a system of three co-linear stars, each
with mass M, with a distance b separating them. The two outer stars
orbit in a circle about the the stationary central star. Determine the
square of the orbital period, 72.

Figure 10: Figure for Problem A77.
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AT78. Tarzan A 17m vine hangs vertically from a tree on one side of a 10 m-

wide gorge. Tarzan wants to run toward the vine, grab ahold of it, swing
over the gorge, let go of the vine, and drop vertically to the ground on
the other side of the gorge. How fast must he run to make sure that he
makes it across the gorge?

17m

/5‘7 0m —%) ———

Figure 11: Figure for Problem A78.

A79. Return of Work, Kinetic Energy, and Dissipation Repeat part b)

of Problem A73, but this time, instead of using the work-kinetic energy
theorem, use Wy = AFELech. Do you get the same answer for the speed
of the ball?

A80. A Bleching Blarg — Checking Dimensions of Answers A blarg

AS81.

with mass m blechs for a time T', after which it flomps a distance d un-
der the influence of a srof Fy with dimensions (mass x distance)/(time)?.
For each of the following choices, determine if the expression could rep-
resent the speed (dimensions distance/time) of the blarg after all of this.
Show your work for each case (there might be more than one correct
answer).

(@57 O pr @80 @5 ©F OyE @/

Dimensions for a Florphtl A florphtl with length L (in m) and mass

m (in kg) has an initial speed v (in m/s). The florphtl is in a magnetic
field By (in units of T where 1 T = 1%) and experiences an electrical
current Iy (in C/s). Which of the following could be an expression for
the acceleration (m/s?) of the florphtl? (Don’t worry about what a “T”
or “C” are — you’ll want these units to cancel out in the final answer
anyway. )

LB 1o B IgBoL 1o LB
(o) 0 g (0 B @) BB g ()
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AR82. Using ratios

(a) In a traffic jam on Interstate I-5 near Los Angeles, assume that
there are 6 cars every 100 feet. How many cars would you expect
to be stuck in 1.0 km of one of these traffic jams?

(b) Let’s say that a 9-inch diameter pizza at Francesco’s costs $12.50.
How much should Francesco charge for a 12-inch diameter pizza, if
the cost is determined solely by the total amount of the ingredients
used to make the pizza?

AR83. Ball pits The “ball pit” at Dunking Bird Amusement Park measures
11 m by 9 m with a depth of 60 cm. Assume that this ball pit contains
8000 balls. The ball pit at Fred’s Amusement Park measures 13 m by
8 m with depth 40 cm, but uses balls that are half the diameter of those
at Dunking Bird Park. Approximately how many balls are needed to fill
the pit at Fred’s Park?

A84. Period of Asteroid Orbit The asteroid Betty orbits the Sun with
a semi-major axis of 3.8 AU. Use Kepler’s Third Law (and ratios) to
determine the period (in years) of Betty’s orbit.

A85. Jupiter’s Moons Jupiter’s moon lo orbits Jupiter with a semi-major
axis 421,700 km and an orbital period of 1.77 days. Another moon —
Ganymede — orbits Jupiter with a semi-major axis of 1,070,000 km.
Calculate the orbital period of Ganymede.

A86. Extrasolar planets The planet Zortox orbits around the star Xyl’pron
with a semi-major axis of 570 klorvm and an orbital period of 2.7 flurps.
Another planet — Rotnox — also orbits around Xyl’pron with an orbital
period of 7.3 flurps. Determine the semi-major axis for Rotnox’s orbit.

A87. Why you will do badly on tests if you don’t show all work A 3.5
meter long piece of rope has a mass of 250 g. Your goal is to determine
the mass of a 7.0 meter long piece of the same rope.

(a) Do this calculation in your head and then write down the answer
on your paper.

(b) Do this calculation again, but write down the steps and your rea-
soning on the paper.

(c) Scribble out or erase every number and unit for parts (a) and (b).
Now grade your work from parts (a) and (b) on a 0-10 point scale
for each, basing the grade on how well someone could understand
what you did and why from whatever remains visible on the page
after the numbers and units have been erased or scribbled out.
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AS88. Science Fiction and the Laws of Physics The following is a sci-
ence fiction story that is inconsistent with the known laws of physics.
Read the passage, and then list 4 different aspects of the story that are
clearly inconsistent with the laws of physics as covered in PHYS 211 this
semester.

The Starship Enterprise is on a mission 5 light years from
the Earth, traveling at 7 times the speed of light while being
chased by a hostile Borg ship. “At our current speed, the Borg
won’t catch us for another three hours,” says Captain Picard
to Admiral Janeway (who is back on Earth) on his iPad 563
as he stares at an ice cube floating lazily in equilibrium with
the liquid in his iced tea. “Well, if they catch up with you,”
replies Janeway, “fire a beam of anti-matter at the Borg ship.
The anti-matter will annihilate part of the ship, and the kinetic
energy that is produced by the resulting mass loss will blow up
the rest of the ship.” “Understood,” replies Picard as he adds
another ice cube to his tea, dropping its temperature down
even more.

Just at that moment, Picard is thrown from his chair as a tor-
pedo from the Borg ship slams into the Enterprise’s engines
from behind. “Our engines have been destroyed ” says Geordi
LaForge as the ship suddenly comes to a complete halt, mo-
tionless in space as the Borg ship close in. “Borg ship,” radios
Picard, “this is the Starship Enterprise. We are prepared to
talk with you.” “Prepare to be assimilated,” replies the Borg
ship. “Resistance is fut — ... “End communication,” says Pi-
card as the Enterprise fires, blowing up the Borg ship.

AB89. Fidget spinners As a sign of opposition to Russian President Vladimir
Putin,? pull out your fidget spinner, hold it in the middle, and give the
outside a quick flick to get it spinning. Do this a few times, and when
you get it spinning as fast as is possible, time roughly how long it spins
before stopping. Then try holding the outside and get the middle part
spinning as fast as you can. Time how long the middle part spins before
stopping.

How does the maximum spinning time compare when the outside is spin-
ning versus when the middle part is spinning (i.e., which one is longer,
and are they close, or is one significantly longer than the other)? Explain.

!See linked article for an explanation of how fidget spinners are being used to overthrow
the Putin government.

2By the way, even if you are a supporter of Vladimir Putin, please try this experiment
— you really won’t overthrow him by playing with a fidget spinner.
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A90. Displacement from velocity graph A car starts from rest and accel-
erates to a speed of 25 m/s and then continues with a constant speed, as
shown in the figure. How far has the car travelled in the first 20 seconds
of its motion?

Aav(m/s)

30 f----

20 [----t----

10 f---- LA

Figure 12: Figure for Problem A90.

A91. Velocities of clock hands A clock has an hour hand of length 2.4 cm
and a minute hand of length 3.8 cm.
(a) Calculate the position and velocity of the hour hand at noon.

(b) Calculate the position and velocity of the minute hand at 12:15.

A92. Velocity addition/subtraction for an airplane You are a pilot
beginning a 1500-km flight. Your plane’s speed is 1000 km/hr, and air
traffic control says you’ll have to head 15° west of south to maintain a
southward course. If the flight takes 100 min, what’s the wind velocity?

A93. Spring ejector on rotating platform

A massless spring with constant k is mounted on I

a turntable of rotational inertia I, as shown. The wr Q
turntable is on a frictionless vertical axle, though ini-

tally it’s not rotating. The spring is com- pressed b

a distance d from its equilibrium, with a mass m Aﬂv

placed against it. When the spring is released, the Y7
mass moves at right angles to a line through the
turntable’s center, at a distance b from the center,
and slides without friction across the table and off the
edge. Find expressions for (a) the final linear speed
of the mass and (b) the final rotational speed of the
turntable. Hint: What’s conserved? Additional hint:

you have to solve parts (a) and (b) simultaneously.
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A94. Simple harmonic oscillation Write expressions for the displacement
z(t) in simple harmonic motion (a) with amplitude 12.5 cm, frequency
6.68 Hz, and maximum displacement when ¢ = 0, and (b) with amplitude
2.15cm, period 1.36s, and maximum speed when ¢ = 0.
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Chapter 1

Solving Equations of Motion
Using Numerical Iteration

1.1 Introduction

The past few decades have witnessed a massive revolution in the way people
live and work, due in great part to significant enhancements in computa-
tional power. Computers are everywhere these days in society, not just on
your desktop (or on your lap) but also in your pockets (MP3 players and cell
phones), in your kitchens (ranges, dishwashers and microwave ovens), and
behind the scenes monitoring the money in your bank accounts, your class
schedules and grades, and your music preferences at on-line music stores.
The significant enhancement in computation power has also dramati-
cally changed all fields of science and engineering. Despite our brilliant
teaching of physics in this course, there are many problems in physics and
engineering that you simply will not be able to solve analytically.! Some
problems simply don’t allow a closed-form solution. But it is even more
severe than that. There are a wide variety of physical systems whose equa-
tions of motion can’t be solved, no matter how brilliant or persistent the
scientist/mathematician. In fact, many real systems are “chaotic,” with sur-
prisingly complicated behavior arising from seemingly simple systems. In
cases where an analytical solution is unavailable, the only option is to solve
the problem numerically, using a computer to simulate the behavior.
Computer simulations have become among the most important tech-
niques in science and engineering. Many of you will use numerical techniques
in your career, whether you are simulating the behavior of a new passenger
airline that you are designing, calculating the forces acting on an artificial
joint that you are designing for a patient, or predicting the effects of a
disruption in Middle East oil supply on the global economy. Numerical sim-

!By “analytically” we mean using the tools from mathematics to determine a written
solution in the form of an equation that can be used to describe the behavior of the system.
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ulations also play a significant role in basic scientific research, enabling us to
explore the behavior of a system that is too complicated to solve analytically
and too difficult to explore experimentally. In fact, numerical simulations
are so common now that they are often considered to be a third branch in
scientific analysis, separate from (and complementary to) experimental and
theoretical science.

The basic idea of numerical simulations is actually quite easy. In this
chapter, we introduce an important technique referred to as iteration where
we break the dynamics of the system into a series of discrete time steps. So,
for example, instead of representing the motion of a ball with a continuous
equation, we instead note the location of the ball, say, every tenth of a
second. Given the location and velocity of the ball at a particular moment in
time, we can predict its location 0.1 s later by using a very simple numerical
techniques referred to as the Fuler Method, a technique that conceptually is
nothing more than a simple application of the common “distance = speed
x time” approach. Despite the simplicity of the Euler method, it is a very
powerful method that is used in many numerical applications. This chapter
introduces the basic ideas (with some homework problems); you will use
the method in lab to simulate the motion of a falling object subject to air
resistance.

1.2 Solving Newton’s second law analytically

Newton’s second law ﬁnet = ma is a differential equation, i.e., an equation
that can be written in terms of derivatives of various quantities. Ideally,
we would like to “solve” this differential equation to determine expressions
(as a function of time) for the velocity and position of a particle moving
under the influence of the forces. If the forces exerted on the particle are all
known, then Newton’s second law can be rewritten in one-dimension as

2
d°x Fnet,x

ax:W: m ) (1].)

where the forces are assumed to be possibly functions of position and ve-
locity. Eq. (1.1) written in that form is known as the equation of motion
for the system under consideration. Mathematically one would proceed by
integrating Eq. (1.1) to determine the velocity as a function of time vy (¢)
and then integrating once again to obtain the position as a function of time
x(t). For example we have learned that for a particle falling from rest from
a height z¢ under the force of gravity Fye; = mg, Eq. (1.1) becomes

A2z

a2 =9, (1-2>
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and integrating we obtain the following expressions for the velocity and
position:

1
vg(t) = —gt and  x(t) = xo — Eth. (1.3)

If you don’t understand how we got these expressions, then take the deriva-
tive with respect to time of z(t) to get v, (¢) and then v,(t) to get back to
Eq. (1.2).

For the example shown above as well as a few other cases, the equation
of motion is relatively straightforward to integrate to get the analytical
functions for velocity and position. As discussed in the previous section,
though, there are many cases where the equations of motion are not so easy
to integrate and other means are necessary for determining the position and
velocity of the particle as a function of time.

In the following sections we will develop a set of equations that we can
use to calculate the position and velocity of a particle at specified time incre-
ments At, a technique called numerical iteration. Although this technique
does not give us as a final result a neat, compact formula for the position
and velocity of the particle into which any value of time can be inserted,
it does allow us to map out the position and velocity of the particle for an
otherwise mathematically intractable problem.

1.3 Numerical Stepping Equations

Let us incorporate the ideas mentioned above into a set of formulas that we
(or better yet, a computer) could use to calculate the position and velocity
of a particle moving under the influence of some forces. Call the present
time ¢ and the time a little later ¢t + At. Let x(¢) denote the position of the
particle now, then z(t+ At) denotes the position of the particle a short time
later. Similarly v, (f) and v, (t + At) represent the present and slightly later
velocities of the particle. In all of these expressions, note that x(t + At)
does not mean the quantity ‘z’ times the quantity ‘¢ + At’ but rather means
the value of the function z evaluated at the time ¢ + A¢. This is standard
functional notation used in mathematics.

Recall the definition of velocity as the rate of change of the position. Tak-
ing At to be very small in magnitude, we may approximate this as “velocity
= displacement /time” and express the velocity at time ¢ approximately as
LAz a(t+ At) —x(t)

~— = . 14
At At (14)

vz (1)

As you recall, Az/At is the definition of the average velocity, while the
instantaneous velocity is actually the derivative of the position with respect
to time. However, for small enough time steps, the average velocity is an
excellent approximation for the instantaneous velocity.
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Turning the previous expression around, we can write an expression for
the position of the particle at time ¢+ At in terms of the position and velocity
at time t:

x(t + At) = xz(t) + vy (t) At. (1.5)

Eq. (1.5) says that the position at time ¢ + At is the position at time
t plus the distance traveled v, (t)At by the particle during the short time
interval At. Notice that this result is only approximate because the velocity
v, at time ¢ is not necessarily equal to the average velocity during the entire
time interval. However, if At is small enough, the approximation should be
quite good.

Next we need an expression for incrementing the velocity. By analogy
with the arguments leading up to Eq. (1.5), we can write

Up(t+ AL) = vy(t) + ag(t)At. (1.6)

The three equations (1.1), (1.5) and (1.6) can now be incorporated into a
looping procedure in a computer program. These three equations constitute
what is generally referred to as Euler’s method of numerical approximation.
Given an initial position and velocity, we calculate the initial acceleration
from Eq. (1.1). Then we calculate the position and velocity a short time
later from Egs. (1.5) and (1.6). Then we repeat the process, pretending
that the new values for x and v, are the initial values. In this way we can
numerically iterate the motion of the particle from instant to instant as far
into the future as we care to. A spread-sheet program, such as EXCEL, can
perform such calculations with very little “programming” required on your
part.

A note about numerical errors is worth mentioning. Remember that
although Eq. (1.1) is exact, Egs. (1.5) and (1.6) that update x and v, to later
times are approximations that are best when At is small. If the calculations
start going haywire, we can help the situation by choosing smaller steps.
This means of course that the computer will have to run longer, but that’s
frequently not a serious problem.

1.4 Numerical Solution for a Mass on a Spring

Let’s apply this new method to a system we will be studying more in depth
later in this course. The system is a mass which moves under the influence of
a force exerted on it by a spring. The spring is a device which exerts a force
which is proportional to the displacement of the mass from an equilibrium
position. Taking the equilibrium position to be x = 0, this implies that
the acceleration of the mass is directly proportional to the position x(t).
Suppose in our particular system the acceleration is given by

az(t) = —2.00 z(t). (1.7)
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The minus sign in this expression tells us that the force is always opposite
to the displacement. We’ll also assume that time is in seconds, position is
in meters, velocity is in meters per second, and acceleration is in meters per
second squared

To proceed, we choose time steps of size At = 0.10 s and start the
clock at t = 0. We could pick any initial position and velocity; let’s choose
to release the mass from rest at a position 0.30 m from equilibrium, i.e.
2(0) = 0.30 m and v;(0) = 0. Let’s walk through the first few steps and
then show some results from a computer spreadsheet.

For our example Egs. (1.1), (1.5) and (1.6) are written as

as(t) = —2.002(t)
2(t+0.10) = 2(£) + 0.10 v, (£) .
Ve (t 4 0.10) = v,(t) + 0.10 a(t). (1.10)

First calculate the initial acceleration by setting ¢ = 0 in Eq. (1.8) to find
a2(0) = —2.00 2(0) = —2.00 x 0.30 = —0.60. (1.11)
Then update x(t) and v, (t) by setting ¢ = 0 in Egs. (1.9) and (1.10):

2(0.10) = z(0) + 0.10v,(0) = 0.30 + 0.10 x 0 = 0.30 (1.12)
02(0.10) = v,(0) + 0.10 a5 (0) = 0+ 0.10 x (—0.60) = —0.06.  (1.13)

Since the mass was initially at rest, a short time later it is still approximately
at the same location. However, since the spring is stretched at ¢ = 0, a force
is acting on the mass immediately, so that a short time later it has already
acquired a non-zero velocity.

How would you find 2(0.20) and v,(0.20)? Again use Eqs. (1.8) through
(1.10), this time with the ‘present time’ ¢ = 0.10. We find that

a,(0.10) = —2.00 2(0.10) = —2.00 x 0.30 = —0.60 (1.14)
2(0.20) = 2(0.10) + 0.10 v,(0.10)
= 0.30 + 0.10 x (—0.06)
=0.294 (1.15)
02(0.20) = v,(0.10) + 0.10 a, (0.10)
= —0.06 + 0.10 x (—0.60)
= —0.12. (1.16)

We can continue this process as long as we like. You will find it convenient
to organize the information for the position, velocity and acceleration for
each time in the form of a table. Table 1.1 on the next page lists t, x, v,
and a, for the motion of this mass. Note that the periodic nature of the
motion is manifested in the entries of the table.
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There is an unsettling aspect of the entries in Table 1.1. We started at
x = 0.30m, but at ¢ = 2.30 s the position of the mass is x = —0.375m, and
further down in the table we find that at ¢ = 4.5 s, z = 0.468 m. What
should we have expected? If we had a real mass connected to a spring
and set it oscillating we would expect the amplitude of the oscillations to
gradually decrease because of the presence of dissipative forces (air resis-
tance and the imperfect elasticity of the spring). In an ideal case, with no
dissipative effects, we would expect there to be no increase or decrease in
the amplitude; that is, the mass should oscillate between z = 4+0.30 m and
x = —0.30m. But this is not the case if we look at the data in Table 1.1.
The problem is that we used too large a time increment. Why does too large
a time increment lead to errors? If you recall, our stepping equations use the
approximation that the average velocity is very close to the instantaneous
velocity. If the time step is too large, this approximation is no longer valid
and leads to errors.

We can improve our calculation of the motion by choosing a smaller
time increment At. If we choose At = 0.01s rather than 0.10s, we would
be calculating over a much finer time interval (10 times smaller) and while
we will have to do 10 times more computations to evolve the motion out to
the same time, the calculations should be more accurate. Table 1.2 lists ¢,
x, v, and a, near a point of maximum displacement for this smaller time
increment. The maximum displacement is now about 0.314. This is still
larger than the initial displacement but not nearly as bad as before. Further
reduction of the time increment would improve the result.



1.4. NUMERICAL SOLUTION FOR A MASS ON A SPRING

Table 1.1: Numerical solution for mo-
tion of mass on a spring us-
ing At =0.10s

t x(t) vp(t)  ag(t)

0 0.300 0 -0.600
0.100  0.300 -0.060 -0.600
0.200 0.294 -0.120 -0.588
0.300 0.282 -0.179 -0.564
0.400 0.264 -0.235 -0.528
0.500 0.241 -0.288 -0.481
0.600 0.212 -0.336 -0.424
0.700 0.178 -0.379 -0.356
0.800 0.140 -0.414 -0.281
0.900 0.099 -0.442 -0.198
1.000 0.055 -0.462 -0.109
1.100 0.008 -0.473 -0.017
1.200 -0.039 -0.475 0.078
1.300 -0.086 -0.467 0.173
1.400 -0.133 -0.450 0.266
1.500 -0.178 -0.423 0.356
1.600 -0.220 -0.387 0.440
1.700 -0.259 -0.343 0.518
1.800 -0.293 -0.292 0.587
1.900 -0.322 -0.233 0.645
2.000 -0.346 -0.168 0.692
2.100 -0.363 -0.099 0.725
2.200 -0.373 -0.027 0.745
2.300 -0.375 0.048 0.750
2.400 -0.370 0.123 0.741
2.500 -0.358 0.197 0.716
2.600 -0.338 0.268 0.677
2.700 -0.312 0.336  0.623
2.800 -0.278 0.398  0.556
2.900 -0.238 0.454 0476
3.000 -0.193 0.502 0.386
3.100 -0.143 0.540 0.285
3.200 -0.089 0.569 0.177
3.300 -0.032 0.587 0.063
3.400 0.027 0.593 -0.054
3.500 0.086 0.587 -0.173
3.600 0.145 0.570 -0.290
3.700 0.202 0.541 -0.404
3.800 0.256 0.501 -0.512
3.900 0.306 0.450 -0.612
4.000 0.351 0.388 -0.702
4.100 0.390 0.318 -0.780
4.200 0422 0.240 -0.844
4.300 0.446 0.156 -0.892
4.400 0461 0.067 -0.923
4.500 0.468 -0.026 -0.936
4.600 0.465 -0.119 -0.931
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Table 1.2: Data for mass on a spring
near a turning point using
At =0.01s

t x(t)  ve(t)  ax(t)
4.190 0.293 0.155 -0.586
4.200 0.295 0.149 -0.589
4.210 0.296 0.143 -0.592
4.220 0.297 0.137  -0.595
4.230 0.299 0.131 -0.598
4.240 0.300 0.125 -0.600
4.250 0.301 0.119 -0.603
4.260 0.303 0.113 -0.605
4.270 0.304 0.107 -0.607
4.280 0.305 0.101 -0.610
4.290 0.306 0.095 -0.612
4.300 0.307 0.089 -0.614
4.310 0.308 0.083 -0.615
4.320 0.308 0.077 -0.617
4.330 0.309 0.071 -0.619
4.340 0.310 0.064 -0.620
4.350 0.311 0.058 -0.621
4.360 0.311 0.052 -0.622
4.370 0.312 0.046 -0.623
4.380 0.312 0.040 -0.624
4.390 0.313 0.033 -0.625
4.400 0.313 0.027 -0.626
4.410 0.313 0.021 -0.626
4.420 0.313 0.014 -0.627
4.430 0.314 0.008 -0.627
4.440 0.314 0.002 -0.627
4.450 0.314 -0.004 -0.627
4.460 0.314 -0.011 -0.627
4.470 0.313 -0.017 -0.627
4.480 0.313 -0.023 -0.627
4.490 0.313 -0.029 -0.626
4.500 0.313 -0.036 -0.626
4.510 0.312 -0.042 -0.625
4.520 0.312 -0.048 -0.624
4.530 0.312 -0.054 -0.623
4.540 0.311 -0.061 -0.622
4.550 0.310 -0.067 -0.621
4.560 0.310 -0.073 -0.619
4.570 0.309 -0.079 -0.618
4.580 0.308 -0.085 -0.616
4.590 0.307 -0.092 -0.615
4.600 0.306 -0.098 -0.613
4.610 0.305 -0.104 -0.611
4.620 0.304 -0.110 -0.609
4.630 0.303 -0.116 -0.607
4.640 0.302 -0.122 -0.604
4.650 0.301 -0.128 -0.602
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Problems
1. For a certain mass-spring system the acceleration is given by a,(t) =

—0.10z(t). Suppose the initial position and velocity are z(0) = 10 m
and v;(0) = —1.0m/s. Calculate x(t) and v, (t) at t = 2 in two different
ways:

(a) Use two steps of 1 second each.

(b) Use four steps of % second each. Round only your final results to
three digits (keep all digits for the intermediate calculations).

(c) Why aren’t the answers to a) and b) the same?

. A drag force on an object is opposite to its velocity and is often propor-

tional to its speed. Let’s immerse the mass-spring system of problem (1)
in a vat of salad oil so that the acceleration becomes

ag(t) = —0.10z(t) — v (t)

Repeat problem 1.1 for this acceleration. Compare the results with those
you originally got in problem 1.1. Are the results what you might expect
when a drag force is present?



Chapter 2

Basic Postulates of Relativity

2.1 Introduction

Certain numbers immediately bring to mind thoughts or ideas. For example,
“101” makes people think of spotted puppies, “747” engenders thoughts of
large airplanes, “911” is the number that you call for an emergency or one
of the worst dates in the history of our country, and “42” is the answer
to the ultimate question of Life, the Universe and Everything. And if you
mention the number “1905” to any physicist, he/she will immediately think
of the year in which Albert Einstein published three papers that completely
revolutionized science and fundamentally changed the way in which we view
the universe. The first paper! introduced the idea of photons (particles of
light), an idea which formed one of the cornerstones of quantum mechanics.?
(You will learn about this next semester in PHYS 212.) The second paper?
was the first to connect molecular diffusion — spreading of an impurity in a
motionless fluid — with random Brownian motion of the individual impurity
molecules, which is regarded as the first demonstration of the existence of
atoms.

The third paper had a innocuous title: “On the electrodynamics of mov-
ing bodies.”* But there is nothing even remotely innocuous about the impli-
cations of the theory, now known as Einstein’s Special Theory of Relativity
(“special relativity” for short), presented in that paper. Einstein’s theory
completely changed our conceptions of time and distance® and of energy
and matter.® The theory also led to an explanation of how stars generate

!A. Einstein, Annalen der Physik 17, 132 (1905).

Interestingly, even though any one of these papers would be a monumental lifetime
achievement for any mere mortal physicist, Einstein received the Nobel prize in physics
only for his work on photons.

3A. Einstein, Annalen der Physik 17, 549 (1905).

4A. Einstein, Annalen der Physik 17, 891 (1905).

5...and, in fact, establishes that they are profoundly related, as we shall see.

6...and, in fact, establishes that they are profoundly related, as we shall see.

o1
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light — the fundamental source of energy in the universe without which
life on this planet would not be possible — and led to the Earth-shattering
(almost literally, unfortunately) development of nuclear weapons. The the-
ory also holds the key to the future development of non-fossil fuel energy
sources. Simply put, you cannot understand how the universe works without
studying Einstein’s theory of relativity.

This chapter and the following three introduce the main ideas and im-
plications of the Special Theory of Relativity, which applies to the motion of
objects in inertial (non-accelerating, or “free float””) reference frames. At
the end of the semester, we will also briefly discuss Einstein’s General The-
ory of Relativity (“general relativity” for short), which expands the theory
to account for the effects of acceleration and gravitational fields.

2.2 Preliminaries

A few definitions will be useful for the next few chapters.

An event is something that happens at a particular location at a par-
ticular time. It is important to be clear about this, because relativity deals
with how different observers measure distances and times between events.
For instance, let’s say that the penguin on top of your television set ex-
plodes at 7:12 a.m. on a Saturday morning. You then run 5 km to a large
tower where you capture (at 7:45 a.m.) a small platypus that inexplicably
is dressed like a secret agent and who is trying to thwart your plans to take
over the Tri-State Area. You could identify two events — (1) the explosion
of the penguin and (2) your capture of the semi-aquatic, egg-laying mam-
mal of action (i.e., the platypus) — and say that these events are separated
by 5 km in space and 33 min in time. Relativity addresses the question of
how a different observer measures the distance and time between the same
two events. (Preview: not everyone will agree about the distance and time
between events.)

So what do we mean, exactly, by “different observers,” and what are
the characteristics of these observers that will determine how their mea-
surements will differ? We start by explaining what is meant by the term
“reference frame.” You can visualize a reference frame as a set of rulers
(distance measuring devices) and clocks (time measuring devices) that are
arrayed throughout space so that the position and time of any event can be
determined directly. The distinguishing feature of a reference frame is that
the set of “rulers” and “clocks” are all at rest with respect to one another.
An observer IN THIS REFERENCE FRAME is at rest with respect to all
the rulers and clocks. Notice that there can be many observers at different
positions in this reference frame, as long as they are all at rest with respect
to each other and to the measuring tools. All observers in the same reference

"Taylor and Wheeler, Spacetime Physics, 2" Edition, (Freeman, 1992), p. 26.
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frame will agree with each other about the distances and times between any
two events, but they will not agree with observers in other reference frames
moving with respect to their frame.

A particularly important kind of reference frame is an inertial reference
frame. Observers in an inertial reference frame experience no significant
acceleration, nor can they discern any gravitational effects. In an ideal
inertial reference frame, the observer would be floating free (hence the name
“free float” that is sometimes used to discuss an inertial reference frame),
because any non-floating motion would necessarily imply either acceleration
or gravitational effects. To analyze behavior in the vicinity of very strong
gravitational fields, it is necessary to use general relativity.

Technically, an observer is not in a true inertial reference frame if she is
standing on the surface of a planet since there is gravitation. However, there
are plenty of situations where non-inertial effects are small enough as to be
negligible. In fact, the gravitation from a typical planet is small enough
so that the non-inertial effects are negligible, and special relativity works
perfectly well. So, for example, we will often treat observers moving on a
constant velocity train as though they are in an inertial reference frame,
even though there is a small gravitational effect.

When dealing with velocities, we have to be careful. A velocity techni-
cally has meaning only if there is a reference. So, for example, if you are in a
car and you are traveling 65 mph toward the West, you are really traveling
65 mph relative to the surface of the Earth. In fact, almost any velocity that
people quote in everyday usage is defined relative to the Earth.

In preparation for class, consider the following question: how
fast are you really going if you are in the car in the previous
paragraph?

Certainly, anyone who is willing to accept a non-geocentric view of the
universe realizes that there is nothing inherently special about the earth as a
reference frame. But scientists have long wondered if there is some preferred
universal reference frame from which all velocities should be defined, some
standard by which we could define absolute velocities for every object in the
universe.

In relativity, we will use relative velocities, i.e., velocities will always be
defined relative to some reference frame. In fact, one result of relativity
is the realization that this is the best way to define velocity. There is no
need to choose any special reference frame for the universe; all the results
of relativity work perfectly well with velocities measured relative to any
reference frame that you might choose.

The following statement applies to relative velocities: if observer A mea-
sures observer B to be moving at a (relative) velocity of ¥ in a particular
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direction, then B measures A to be moving at a (relative) velocity of —;
i.e., same speed but opposite direction.

2.3 Fundamental Principles of Relativity

FEinstein’s Special Theory of Relativity is based on a very simple premise,
namely:

The Principle of Relativity: the laws of physics are the same
for observers in different inertial reference frames.

Let’s say, for example, that Michelle sets up a lab in the basement of Olin
Science while Barack sets up an identical lab inside a truck that is driving on
Route 15 with a constant velocity. Whatever physics equations (including
fundamental constants) Michelle uses to predict and describe the behavior
in her lab should work equally well for Barack in his lab.

Not only is this an intuitively reasonable statement, but the argument
can be made that the whole field of physics would be useless if this statement
weren’t true (along with chemistry, biology and engineering as well). After
all, what is the point of formulating a set of laws to describe the universe if
they only apply to certain observers moving in a certain way?

The question then boils down to this: what are the fundamental “laws
of physics” that are the same for all observers? At the beginning of the
20t century, there were two main cornerstones of physics: Newton’s Laws
of Classical Mechanics, and Maxwell’s Equations describing electrical and
magnetic fields. You have already been introduced to Newton’s Laws. We
will be discussing electricity and magnetism in PHYS 212, but here we
highlight some of the ideas relevant to our discussion of relativity.

During the 19" century, there was a tremendous surge of research to
describe electric and magnetic phenomena, culminating in the integration
of electromagnetic theory into a set of four fundamental laws by James Clerk
Maxwell in the late 1800s. Maxwell’s results not only unified electricity and
magnetism into a single, consistent theory, but also showed for the first time
that light is an electromagnetic wave (you’ll learn more about this in PHYS
212). The theory also showed how to produce a wide variety of different
types of electromagnetic waves, a prescription that had been successfully
tested during the period between Maxwell’s theory and Einstein’s work on
relativity. Suffice it to say that Maxwell’s equations were (and still are)
considered by the scientific community to be one of the cornerstones of
physical law.

But there was a problem: by the end of the 19*" century, some theo-
rists attempted to generalize Maxwell’s equations to apply in any reference
frame and found that this could not be done within the framework of New-
tonian Classical Mechanics. There arose a conflict between the two most

9th
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widely-accepted cornerstones of physics: Newton’s Mechanics and Maxwell’s
equations.

Here is where Einstein came into the picture. Whereas few people had
previously had any doubts about the validity of Newtonian Mechanics, Ein-
stein started from the assumption that Maxwell’s Equations of electricity
and magnetism were a fundamental law of physics that were valid in any
reference frame, and then set about re-writing Newton’s Laws (generalizing
them, actually) to assure that Maxwell’s Equations would be valid in any
reference frame. (Hence the title of Einstein’s third paper in 1905.)

The argument is actually fairly simple. If Maxwell’s Equations are
valid for observers in any inertial reference frame, then not only the form
of the equations but also all the constants should be valid in any refer-
ence frame. Two of the constants in particular — the permittivity of free
space €y, and the permeability of free space pg combine to give a value
1/poco = 9.0 x 101 m? /s, which is the square of the speed of light when
it propagates through a vacuum! Based on the fundamental Principle of
Relativity (above), the conclusion is staggering. If Maxwell’s equations for-
mulate a fundamental law of physics, then the Relativity Principle implies
the following consequence: 3

The invariance of the speed of light: The speed of light in a
vacuum c is measured to be 3.0 x 108 m/s by any observer in any
inertial reference frame.

Although verified experimentally,® this statement runs counter to our intu-
ition, based on common experience. Consider the following sample problems:

Example 2.1 Classical calculation of relative velocities I.

Karen is running down the hall of Olin with a loaded blow dart gun.
She is running with a constant speed of 5 m/s when she sees Brian and
Jeff standing in front of their lab. While still running, she fires a blow
dart in their direction. If the speed of the blow dart is 15m/s relative
to Karen, how fast is the dart moving with respect to Jeff and Brian’s
reference frame?

8Einstein stated the second postulate slightly differently: “light is always propagated
in empty space with a definite velocity ¢ which is independent of the state of motion of
the emitting body.” It can be shown that the invariance of the speed of light, with respect
to the motion of the source, and the invariance of the speed of light with respect to the
motion of the observer are simply consequences of each other.

9In fact, an experiment by Michelson and Morley in 1895 already indicated the invari-
ance of the speed of light in vacuum.
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Solution: The answer is what you would think — simply add the
speeds to find that the blow dart travels at a speed of 20 m/s relative
to Jeff and Brian.

Example 2.2 Classical calculation of relative velocities II.

Brian now picks up his blow dart gun and aims it in Karen’s direc-
tion. Karen quickly retreats, running away from Brian and Jeff with
a constant speed of 5m/s. Brian fires a dart toward Karen at a speed
15 m/s measured from his reference frame. How fast is the dart moving
with respect to Karen’s reference frame?

Solution: Again, the result is what you would think — simply sub-
tract the speeds to find that the blow dart travels at a speed 10m/s
relative to Karen.

Example 2.3 Speeds of light pulses.

Lord Fa is returning to his home world of Gao. Approaching the planet
at speed of 2.0 x 10 m/s (relative to the planet), he sends a beacon of
light to Commander Nea stationed on Gao. This pulse of light leaves
his ship with a speed 3.0 x 103m/s relative to the ship. How fast is
the pulse moving relative to Commander Nea?

Solution: Classically, you should expect that Commander Nea would
view the pulse as moving with a speed of 5.0 x 108m/s. But this is
wrong. Instead, from her reference frame, the pulse is moving with
a speed of 3.0 x 108 m/s! That’s just the way it is with light pulses
moving in a vacuum — everyone measures the same speed of 3.0 x
10® m/s, regardless of their motion.

You should find the results of the above example to be strange — there
is nothing in our everyday experience that would lead us to expect such
a result. But numerous experiments have measured the speed of light in
a wide variety of reference frames, and the results always agree with the
statement of the invariance of c.

That the speed of light (in empty space) does not depend on the speed
of its source has been demonstrated so convincingly and the value of the
speed measured so accurately that the value is now defined to be exactly
299,792,458 m/s. By combining this definition of ¢ with the definition of
the second (in terms of an atomic clock), we no longer need an independent
definition of the meter.



2.4. TIME DILATION o7
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(a) (b)

Figure 2.1: (a) A light clock used in the thought experiment described in the text.
(b) Light clock C passing rest-frame clocks A and B. The dotted line
shows the path of C’s light pulse as observed in the rest frame of A
and B.

2.4 Time dilation

The most startling consequence of the invariance of the speed of light is
that it forces us to abandon the notion of absolute time. This means the
time interval between two events depends on the velocity of the clocks used
to measure the interval. The following thought experiment should help you
understand this concept of the relativity of time intervals.

Imagine three identical clocks constructed as follows. Each clock contains
a light source that emits a pulse of light toward a mirror some fixed distance
away (see Figure 2.1a). The mirror reflects the pulse back toward the source.
When the reflected pulse returns to the source and hits a triggering device,
the source immediately fires a second pulse, which reflects from the mirror
and triggers a third pulse, and so on. A count registers in a counter for each
return pulse so the number of counts becomes a measure of elapsed time.

We place two of these light clocks, A and B, a fixed distance apart and
at rest in a reference frame attached to the constant velocity Earth. We put
the third clock, C, on a spaceship traveling at a constant velocity ¥/ relative
to the Earth (see Fig. 2.1b), and perpendicular to the direction of travel of
the light pulse in the clocks.

Suppose clock C emits a light pulse at the exact instant it passes clock
A. Also suppose that the distance between A and B is such that clock C
passes clock B at the precise instant clock C’s reflected pulse returns to the
source. We therefore have two events: Event #1 = “C passes A” and Event
#2 = “C passes B.” We label the time interval between these two events
— measured by clock C — as Atc. The quantity At is called the proper
time interval between the two events; proper time is defined as the time
measured on a single clock that is present at both events. In the
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A vALAB vAtap B
2 2

Figure 2.2: Diagram for derivation of the proper time relation. In this figure
Atap is the elapsed time determined from the clocks A and B, and
Ate is the elapsed time on clock C.

case discussed above, clock C measures the proper time. In our particular
arrangement, the proper time is exactly one tick.

We now pose the crucial question, the answer to which is the key to
understanding all of special relativity.

What is the elapsed time Atap as measured by clocks A and B
for clock C to travel from A to B?

“Simple,” you might think. “The answer is obviously exactly one tick, the
same as that measured by clock C, right?” Wrong. As we will see, the con-
cepts of absolute time (i.e., everyone and everything measures the passage
of time the same way) is a casualty of the invariance of the speed of light.

For the question posed above to have any meaning, clocks A and B must
be synchronized; i.e., observers in the Earth’s reference frame would say that
the two clocks are reading the same time. (Note: this is not a trivial matter
— we will discuss synchronization more fully in Chapter 3.) The two-clock
time Atap is then the difference between the time reading on clock A at
Event #1 (clock C at clock A) and the time reading on clock B at Event
#2 (clock C at clock B).

In clock C’s reference frame, clock A passes C first, and then clock B
passes C. The time interval between these events is Afc on clock C and
therefore the light pulse in clock C travels a round-trip distance equal to
cAtc. But from Fig. 2.1 this same pulse (the one inside clock C) travels
a longer, zig-zag path when viewed from the frame in which clocks A and
B are at rest. Because of the invariance of the speed of light, this longer
distance must translate into a longer time interval. This means the round
trip time for clock C’s pulse is one tick as measured on clock C, but it is
more than one tick when measured on clocks A and B. In other words, the
elapsed time between the event “C passes A” and the event “C passes B”
is longer when measured with the two clocks A and B than when measured
with the single clock C.

How much longer is the time interval At p measured on the A and B
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clocks than the proper time interval At- measured on clock C? We can find
out by looking at the path taken by the pulse of light in clock C viewed from
C’s reference frame and from A and B’s reference frame (see Fig. 2.2). As
we’ve already seen, in clock C’s frame the pulse travels straight up and down
along the vertical line in the figure and the total round-trip distance is cAtc.
The same pulse, traveling for time At 4 relative to A and B travels the total
zigzag distance cAtap. Clock C itself travels a distance vAtp relative to
clocks A and B while the pulse makes one round-trip in C. Therefore, using
the Pythagorean theorem on either small triangle in Fig. 2.2, we find

cAtap 2_ cAto 2 vAtAB 2
(2>_(2>+ s ) (2.1)

from which we solve for the proper time At to obtain

AtC:AtAB\/l—’UZ/C2. (2.2)

This relation can be written in the general form:

Atproper = Attwo—clock V 1- UZ/CQ' (23)

This very important relation is sometimes called the “proper time relation”
or the principle of “time dilation.” Qualitatively, it expresses the fact that
different observers measure the passage of time differently depend-
ing on their relative motion.

Hidden inside Eq. (2.3) is another result from special relativity; namely,
no object can travel at a speed greater than c relative to any other object or
reference frame. A superluminal speed (|v| > ¢) would result in an imaginary
proper time, something that has no physical meaning. You will learn later
that this speed limit is imposed by energy considerations as well (it would
take an infinite amount of energy to accelerate an object with mass'® to a
speed v = ¢ relative to an observer, and more than an infinite amount of
energy to achieve a speed v > ¢). Therefore, because |v| < ¢, the proper
time interval Atpoper between two events is always smaller than the time
Atiwo—clock measured in a frame that requires two synchronized clocks for
measurement.

Example 2.4 Time dilation.

A father and his daughter are traveling on a train that moves with
a constant speed of 1.8 x 108m/s (= 0.6¢) relative to the ground.

100f course, a photon of light can be considered an “object” that travels at a speed ¢,
but this is a massless object. We’ll say more about this in Chapter 4.
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They pass a parked VW Beetle at which point the two of them si-
multaneously yell, “Red Punch Buggy!” and punch each other on the
shoulder. Three seconds later, the daughter yells, “Jinx!” What is the
time between these two events according to a person inside the VW
who is waiting for the train to pass?

Solution: The key question — who measures the proper time (i.e.,
the smaller time interval)? To answer this, write this down in terms
of events. Event A = father/daughter punch each other; Event B =
daughter jinxes her dad. In this example, the father/daughter are at
both events (not the person in the car), so they measure the smaller
(proper) time interval, which has already been stated to be 3s. So,
we are given Atproper and we are solving for Atyo—clock, Which is the
time interval measured by the person in the car.

Atproper = Attwo—clock\/m
= Attrain = Atvwm

Attrain

NiErr

3s
V1 —(0.6¢/c)?
3s
V1 —-0.62
= 3.75s. (2.4)

= Atvw =

In this example, the father and daughter on the train measured the
proper time because they were at both events, so the time interval is smaller
from their reference frame. Be careful, though: sometimes the observer
standing on the Earth measures the smaller time interval — it all depends
on what the events are and who happens to be present at both of them.

Note also that we expressed v as a fraction of the speed of light — it
makes things a lot simpler to write v in this manner. We’ll say more about
this later

2.5 Length contraction

One thing that will come up repeatedly in this unit is the fact that relativity
breaks down the distinction between distance and time. In fact, in relativity,
distance and time are really just flip sides of the same coin. And as we will
see now, you can’t change our conception of time without making a similarly
dramatic change in the way we view distances and length.
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Figure 2.3: Sketch of train for length contraction thought-experiment.

Consider the following thought experiment: a train is moving on a track,
with Observers A and B at the front and back end of the train. A and B have
measured the length of the train with a long tape measure that they carry
with them on the moving train, and find the length to be Li;ain. The train
goes past Observer C who is standing next to the track with a stopwatch
(see Fig. 2.3). Relative to C in the “ground reference frame,” the train is
moving with a speed v. From the train’s reference frame, of course, it is C
and the ground that are moving at a speed v in the opposite direction.

Let’s say that Observer C wants to measure the length of the train. He
can use his stopwatch to do this: since distance = (speed) x (time), the
length of the train is simply the speed v times the time interval between
when the front of the train passes and when the back of the train passes.
Let’s consider two events: Event A = front of train passes C; Event B =
back of train passes C. According to people on the train, the time between
the two events Atirain = Lirain/v, where Lip,in is the previously-measured
length of the train — this is how far Observer C moves between the events
according to train observers. But, as we saw in the previous section, C
measures the proper time (since this observer is at both events), which is a
smaller time interval:

Ato = Atproper = Atirainy/1 — v2/c2. (2.5)
Based on this result, Observer C now says that the length of the train is
Length = (speed) x (time) = vAtc
= VAbrainy/1 — 0% /2
= Lirainy/1 — v2/2. (2.6)

The length of the train as measured by an observer by the side of
the track is less than the length of the same train as measured by
people moving with the train.

We can write this relation (referred to as the Lorentz contraction or
simply length contraction equation) in more general terms:
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Lother = Lrest V 1- U2/C27 (27)

where L,est is the length of an object as measured by observers in a reference
frame where that object is at rest, and Lyiher is the length as measured by
observers in a different reference frame. Note that an object is always largest
when viewed from its own reference frame, and shrinks when it is viewed as
moving.

Some comments are in order:

e You can’t have time dilation without length contraction — the two
necessarily go hand-in-hand. This is a recurring theme of relativity
— Einstein’s theory can’t be taken “a la carte”; rather, it is all or
nothing. Einstein realized that if any single prediction of relativity
were ever refuted, then the entire theory would have to be discarded.

e The arguments in this section apply to length components along the
direction of the relative motion. Components of a length in directions
perpendicular to the relative motion are not contracted.

e Length contraction is not an illusion or merely a matter of perception.
In the example, the train doesn’t just appear to be smaller from C’s
reference frame; rather, it really is smaller in that reference frame.
Some of the homework problems and drill questions will investigate
some of the curious properties of length contraction.

2.6 Experimental evidence

Most people are skeptical when they first read about the predictions of
special relativity. This is to be expected, since we do not experience time
dilation or length contraction effects on a daily basis. For these effects to
be significant, you need relative velocities that are significant fractions of
the speed of light. Looking at both Egs. (2.3) and (2.7), the key piece is
the stretch factor y/1 — v2/c?, which is almost identically equal to 1.00 for
even the fastest velocities that people ever experience. This is an important
aspect of relativity; namely, that it obeys classical correspondence, i.e., the
results of relativity agree with Newton’s classical results for smaller veloci-
ties.

Despite the fact that relativistic effects are almost negligible in the “ev-
eryday” phenomena of our personal experience, there is copious experimen-
tal evidence that shows that Einstein’s predictions are correct. In every case
where an experiment has tested the theory of relativity, the experimental
results have always agreed precisely with the predictions of relativity. Some
examples:
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e Time dilation. Time dilation is the most tested aspect of relativity.
The most direct test was performed by taking two identical atomic
clocks, flying one around the world on a plane and leaving the other on
the ground, then comparing their readings after the trip. As predicted
by Einstein, the clocks had ticked off different times, and by precisely
the predicted amount.'! Particle decay has also been used to test time
dilation: a type of particle that typically lives for a certain period
of time has been shown to live significantly longer if accelerated to
high speeds (relative to an observer); again, the difference in times
agrees perfectly with relativity. And the Global Positioning System
(GPS) — which involves a series of satellites with precise clocks — uses
relativity extensively to keep the orbiting clocks synchronized with
those in the GPS units on the Earth. Without relativistic corrections,
GPS wouldn’t work!

e The speed of light as a speed limit. This result is verified daily
in particle accelerators. It is fairly straightforward for scientists to
accelerate subatomic particles to speeds close to the speed of light.
But no matter how much energy is added, the speeds never make it to
or above c. Electrons, in particular, have been accelerated to speeds
u > 0.99999999999¢, but never up to or above c.

e Length contraction. No experimentalist has managed to accelerate
a train to relative speeds large enough to measure length contraction
effects. (Trust us: you wouldn’t want to be anywhere near a train going
this fast.) But there is experimental evidence for length contraction:
(a) cosmic rays produced at the top of the Earth’s atmosphere some-
how manage to make it to the surface of the Earth before decaying,
despite the fact that they are very unstable. Some of these particles
have lifetimes so short that even traveling at speeds close to ¢, they
would be expected to decay long before they reach the ground. This
can be explained using length contraction: the distance from the top
of the atmosphere to the Earth’s surface is significantly contracted
from their reference frame, so there is no problem making it to the
Earth’s surface before decaying.!'? (b) Another piece of experimen-
tal evidence comes from electromagnetic theory — it turns out that
you can explain why an electrical current produces magnetic effects
by applying relativistic length contraction to the stream of electrons.
The argument is too long to present here (especially since we haven’t
covered electricity and magnetism yet), but suffice it to say that the
results agree perfectly with an analysis based on length contraction.

"Note that General Relativity plays a role here because the height of a clock also affects
its rate, but the experiments took account of these general relativistic effects.

12This result can also be explained using time dilation, of course, because time dilation
and length contraction are really different aspects of the same phenomenon.
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There are other experimental tests of other aspects of relativity, some of
which will be discussed later in this unit (when those aspects are presented).
But, in general, it is worth remembering that relativity is not a series of dif-
ferent theories, but rather is a single, coherent, internally consistent theory.
All of the predictions are inherently related to each other. So you can’t
say, “Well, I'm fine with time dilation but I don’t buy length contraction.”
You simply can’t have time dilation without length contraction — they are
the same thing. So even if there hadn’t been any independent experimental
evidence of length contraction (which there is) there would be very little
doubt of its veracity since time dilation has been verified extensively.

2.7 Units and dimensionless velocities

When working with relativity, it is convenient to express lengths in terms of
distance traveled by light in one unit of time. A “light year” for instance is
the distance that light travels in one year. An analogy would be to say that
the distance between here and New York City is “three car hours” (i.e., it
takes 3 hours to get to New York in a car driving at highway speeds). In
fact, you will often hear people using time directly to express a distance:
“Oh, it’s 3 hours to New York City from here.” We will abbreviate these
units as lt-s, lt-min, 1t-yr, ... for light-second, light-minute and light-year,
respectively. Using these units for distance, we can express speeds in terms
of lt-s/s, lt-min/min, lt-yr/yr, etc. Since the speed of light ¢ = 11t-s/s =
1lt-min/min = 1lt-yr/yr = ..., the speed of a particle in these units is
simply the speed expressed as a fraction of the speed of light.

Example 2.5 Units Conversion from lt-s/s to m/s

A proton is traveling at a speed of 0.251t-s/s. Find its speed in units
of m/s.

Solution: Use the fact that 11t-s/s is equal to about 3.00 x 10 m/s.
Then convert units in the usual way:

3.0 x 108m/s

=0.75 x 10%m/s.
11t-s/s x m/s

0.251t-s/s x

In this example, a particle has a speed u = 0.251t-s/s. This same
speed could be expressed as u = 0.25c. In fact, we will typically
express velocities as a fraction of the speed of light c.
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Problems

1.

Give a one sentence definition of a meter, using the concept of a second
and the defined value for c.

. A proton is traveling at a speed of 4.0 x 107 m/s. How fast is the proton

traveling in units of lt-s/s?

. A 77 meson is traveling at a speed of 0.0601t-s/s. Convert this speed to

m/s.

. A spaceship moving at constant speed 0.801t-s/s travels between two

planets A and B in 1000s, as measured by synchronized clocks on the
planets. Calculate the elapsed time according to a clock carried on board
the spaceship.

. How fast does a particle have to travel relative to clocks A and B, which

are at rest relative to each other, in order that its elapsed time as read on
a clock moving with the particle is one-tenth the elapsed time measured
on clocks A and B? Express your answer both in lt-s/s and in m/s.

. A meteorite is observed to travel a distance 1.00 x 10° lt-s relative to the

Earth in a time of 6.00 x 10° s as measured by Earth observers. Calculate
the elapsed time for this trip as measured by a clock carried along on
the meteorite.

. A crew of astronauts travels at a speed of 0.60c¢ from Earth to the near-

est star, Proxima Centauri, a distance of 4.01t-yr (as determined by
observers on Earth).

(a) Calculate how long the trip takes according to observers at rest
relative to the Earth.

(b) Calculate the time for the trip as measured by a clock on the space-
ship.

(c) Based on your answer to b), calculate the distance from Earth to
Proxima Centauri as determined by the astronauts using the re-
lation “distance” = “speed” x “time”, where distance, speed and
time are all measured from the astronauts’ reference frame.

(d) Calculate the Earth-Proxima Centauri distance from the astronauts’
reference frame, but this time use length contraction. You should
end up with the same result as for c).

(e) Think about the results from parts c¢) and d). This should convince
you that length contraction and time dilation are really the same
thing (i.e., you can’t have one without the other).
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8. Another spaceship crew wants to make the trip from Earth to Prox-
ima Centauri in only 2.0 years as measured by clocks on board their
spaceship. (Recall from the previous problem statement that the dis-
tance between Earth and Proxima Centauri is 4.0 lt-yr as determined by
observers on Earth.)

(a) How long does the trip take according to Earth-frame observers?

(b) How fast must the astronauts travel relative to Earth?

Hint: First, do both parts a) and b) together. Also, you will need
to express the speed in terms of the unknown travel time according to
Earth-frame observers.

9. You are in a metallic red VW bug stopped at a traffic light. You see
the traffic light turn green, and 2.5 us later you hear the car behind you
honk its horn. What is the time between you seeing the light change to
green and your hearing of the horn honk as measured by an alien passing
by in a ship at a speed 0.9¢?

10. There is a supergiant star named Betelgeuse'® which (in the Earth’s
reference frame) is 80 lt-yr away.

(a) A crew of astronauts is traveling toward Betelgeuse, traveling at a
speed 0.8c relative to the Earth-Betelgeuse reference frame. What
is the separation between Earth and Betelgeuse in the astronauts’
reference frame?

(b) Another crew traveling toward Betelgeuse measures the Earth-Betelgeuse
distance to be 231t-yr. How fast is this second crew traveling rela-
tive to the Earth?

11. Betty is standing by the side of a train track when a really long train ap-
proaches traveling at a ridiculously fast speed of 0.9¢. Thinking quickly,
she pulls out her stopwatch, clicks it on when the front of the train
passes and clicks it off when the back of the train passes. After stand-
ing back up and smoothing down her hair, she notes that her stopwatch
reads 0.0025s. (She has really good reflexes.) Betty now makes some
calculations.

(a) According to Betty, how long is the moving train? (Assume that
she was warned in advance that the train was going at a speed 0.9¢.)

13Betelgeuse is a supergiant star located in the constellation Orion. It is very cool
because it could go supernova anytime in the next million years, and that will be quite a
show for us when it does.
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(b) Later that day (not much later), the train reaches its destination
and stops. What is the length of the train according to people
standing next to the (now motionless) train?

12. During migration, two fast Arctic terns fly one behind the other over
London at speed 0.8c. A tourist sees the birds pass by while looking at
the Big Ben clock tower. She notes that a time of 12.0 ms elapsed on the
clock between the first bird’s passing and the second bird’s passing.

(a) How much time elapsed between these two events, according to the
birds?

(b) How far apart are the birds according to the tourists watching the
birds fly by?

13. Playing Catch on a Train I

Note: This is a non-relativistic physics problem.

You are riding in a box car of a train that is traveling along the tracks at
30m/s. You are bored, so you start to play catch with your friend who
is standing on the opposite side of the box car, 5m away from you. You
throw the ball at a speed of 10m/s straight to your friend, who catches
the ball; the given speed and direction are determined in your reference
frame. You may ignore any vertical motion of the ball.

Overhead view looking down on train

? QYour friend
] 5m ‘ ]

iC‘DYou

>
Vtrain = 30 Hl/S

Figure 2.4: Figure for Problem 13. This is a top view looking down upon the
train.

(a) How long does it take for the ball to reach your friend according to
you?

(b) How long does it take for the ball to reach your friend according
to an observer standing at rest on the ground? (This is a dumb
question in classical physics — if the answer isn’t obvious, you're
thinking too hard!)

(c) How far does the ball travel according to the observer standing on
the ground?
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14.

15.
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(d) What is the speed of the ball according to the observer standing on
the ground?

Playing Catch on a Train II

Note: This is a non-relativistic physics problem.

You are riding in a box car of a train that is traveling along the tracks at
an undetermined speed. Once again, you are bored, so you start to play
catch with your friend who is standing on the opposite side of the box
car 5m away from you. (See figure in previous problem.) You throw the
ball in a horizontal plane at a speed of 10m/s straight to your friend,
who catches the ball. According to an observer on the ground, the ball
travels a distance of 13.93 m between the time you throw it and the time
your friend catches it. Calculate the speed of the train along the tracks.

Photons on a Train

Note: This is a relativistic physics problem.

Alice is riding in a box car of a train that is traveling along the tracks
at a speed v = 0.6 lt-ns/ns. She just happens to have a light-clock with
her (just like the one illustrated in Fig. 2.1 in Chapter 2). Alice aligns
the clock so that the light is aimed horizontally directly across the train
car, perpendicular to the motion of the train. Alice sends a light pulse
across the train, and notices that the light returns to the detector 2ns
later. Alice’s friend Bob is standing at rest on the ground as Alice and
her light-clock speed by. Bob measures the round-trip time for the pulse
of light in Alice’s light clock to be Atgop.

(a) What is the speed of the light pulse according to Alice?

(b) Determine the distance between the emitter/detector and the mir-
ror in the light-clock as determined by Alice.

(c) What is the speed of the light pulse according to Bob? (This is a
dumb question in relativistic physics — if the answer isn’t obvious,
you're thinking too hard!)

(d) Determine length of the path traversed by the light pulse according
to Bob in terms of the unknown time Atpgy,.

(e) Use the Pythagorean theorem to find the distance traveled by the
light pulse according to Bob. From this determine a numerical value
for Atgob.

(f) Now use Eq. (2.3) to calculate Atpop. This answer should agree
with the answer you determined in the previous part.



Chapter 3

Relativistic Spacetime

3.1 Introduction

The previous chapter introduced the basic ideas of relativity along with some
of the most dramatic implications of the theory. But the predictions of time
dilation and length contraction are merely special cases of a much broader
theory. In this chapter, we discuss the idea of spacetime, which blends time
and space together. We introduce the spacetime interval, a quantity that is
one of the fundamental invariants in relativity, and we use this interval to
relate distance and time measurements made in different reference frames
that are moving with respect to each other. We also introduce spacetime
diagrams, which provide a graphical way of illustrating relativistic phenom-
ena, particularly the relativity of simultaneity.

3.2 Spacetime intervals

As we saw in Chapter 2, observers in different reference frames disagree
about time and distance measurements. But there are a few quantities
referred to as invariants upon which all observers agree regardless of their
reference frames. Omne of these invariants was discussed in the previous
chapter; namely, the invariance of the speed of light in a vacuum. It turns
out that distance and time can be folded together to make another invariant,
referred to as the invariant spacetime interval I, defined by

I? = (cAt)? — (Ax)?. (3.1)

Note that I2 can be positive, zero, or negative. If I? is positive, then the
interval is called time-like since the first term — with At in it — dominates.
Similarly, negative values of I? correspond to space-like intervals, and if
I? = 0, the interval is called light-like. Qualitatively, an interval is light-like
if a pulse of light could travel directly between the two events. This can be

69
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seen from Eq. (3.1): if I? = 0, then

0 = (cAt)® — (Az)?
= Az = *cAt, (3.2)

as would be expected for a pulse of light traveling a distance Ax in a time
At.

Two events could be causally-linked (i.e., event A actually causes or
contributes to event B) if the spacetime interval between them is either
light-like or time-like. In fact, for time-like spacetime intervals, the interval
is the proper time (multiplied by c). If two events are separated by a space-
like interval, then no information can travel between the two events since it
would require superluminal (Jv| > ¢) information transmission, and nothing
(especially information) can travel faster than light relative to any observer.
So events can’t be causally linked if the square of the spacetime interval
between them is negative.

Example 3.1 Causality and intervals!

In the year 2055, a father and his daughter are watching the AFC
championship playoff game (American football) from a Moon base at
the Sea of Tranquility. Patrick Mahones, Jr. of the Kansas City Chiefs
throws a touchdown pass with 17 seconds left to give the Chiefs a 3-
point lead. But Josh Allen, Jr., quickly leads the Bills downfield and
into field goal range. Just as the Bills are kicking what will be a game-
tying field goal, the daughter sneezes and then watches in horror as
2.0s later Scott Norwood, Jr., of the Bills kicks the ball which just
misses, ending the game. Distraught, the daughter bursts into tears.
“What’s wrong?” her father asks. “It’s my fault that the Bills lost!
My sneeze caused Norwood to miss the field goal!” What argument
should the father use to assure his daughter that she is not personally
responsible for yet another heart-breaking Buffalo Bills loss?

Solution: The father should first point out that the distance be-
tween the Earth and Moon is 3.84 x 108m, or 1.31t-s. So, if the fa-
ther /daughter received the TV signal of the field goal kick 2.0s after
the sneeze, in their reference frame it must have actually occurred only
0.7s after the sneeze. (It takes the TV signal 1.3 s to make it from the
Earth to the Moon.) Now, the father should calculate the spacetime
interval between his daughter’s sneeze and Norwood’s errant kick:

I? = (cAt)? — (Az)® = (11t-s/s x 0.75)% — (1.31t-5)? = —1.2 (It-s)?

'Don’t worry if you aren’t familiar with the rules of American Football — you don’t
have to understand the game to get the gist of this example.
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So, the father should pat the daughter on the head and say, “So, you
see honey — you can’t have caused Norwood to miss that kick because
the spacetime interval between your sneeze and his kick is a space-like
intervall”2:3:4,5 6

Don’t worry about the fact that I? is negative for space-like intervals.
The definition of I? in Eq. (3.1) is chosen so that for time-like intervals,
the interval I itself is the proper time (multiplied by ¢), which is convenient
for our purposes. But the interval could have equally been defined as I? =
(Az)? — (cAt)?, in which case I? would be negative for time-like intervals
(some authors do, in fact, define I? this way). In fact, some physicists
define two different intervals: I2 = (¢cAt)? — (Az)? for time-like intervals and
I? = (Az)? — (cAt)? for space-like intervals. We will stick with Eq. (3.1).

As stated earlier, I? is an invariant — observers in different reference
frames will agree on the value of this interval for any two events:

2= (1), (3.3)

or

(cAt)? — (Az)? = (eAt')? — (Az!)®. (3.4)

2By the way, we originally wrote this as a major-league baseball problem about the
Red Sox when they hadn’t won a World Series in over 80 years. The following year, they
won the World Series. And that is a time-like interval, so, yes, we do take credit for the
Red Sox victory.

3And then we switched the example to one with the Chicago Cubs because, well, it
didn’t work for the Red Sox anymore, and we figured, “Well, we’ll be able to use this
example for decades because the Cubs will never win the World Series!” But the Cubs
messed that up a few years ago. (Also a time-like interval, so we take credit for the Cubs
World Series championship, too.) So, we switched it again, this time to the Washington
Nationals, comfortable in the knowledge that we will never have to change this example
again.

4And then guess what happened? The Nationals won the World Series in 2019! The
anti-jinx strikes again!! We have actually been presented with thank-you gifts from grateful
Nats fans who have decided that our supplementary reading is responsible for their victory.
Oh, and of course, this is another time-like interval, so we take credit for the Nats’ World
Series victory as well as those from the Red Sox and Cubs.

%S0 ... we decided in 2022 to switch to American Football and the Buffalo Bills who
not only had just lost a heart-breaking loss in the previous playoffs to the Kansas City
Chiefs but who have never won a SuperBowl (although they played in four straight in
1990-1993 and lost all four games!! (Check out Super Bowl XXV for a particularly
heartbreaking loss.) So, we have decided that Buffalo is now the city most deserving of
an anti-jinx.

(By the way, we of course don’t believe in jinxes or anti-jinxes. But this makes for a
really amusing series of coincidences.)
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This is important for several reasons. First, the invariance of the interval
helps to further clarify the intimate connection between distance and time
in relativity. Any disagreements between different observers about the time
interval between events must be accompanied by a corresponding disagree-
ment in the distance in order to keep the interval invariant. Second, if
an interval is space-like or time-like or light-like as viewed in one reference
frame, then it is the same kind of interval as viewed in any reference frame.
This makes sense: if two events cannot be causally-linked in one reference
frame, for instance, it would be nonsensical to think that they would be
causally-linked as observed by someone in a different reference frame. Fi-
nally, the interval can be used to determine how events are viewed in one
reference frame, given information in a different frame. As an example, we
refer back to a problem from the previous chapter.

Example 3.2 Using the interval

A spaceship crew wants to make the trip from Earth to Alpha Centauri
in only 2.0 years as measured by clocks on board their spaceship.

(a) How long does the trip take according to Earth-frame observers?
(b) How fast must the astronauts travel relative to Earth?

Solution: For problem 7 in chapter 2, you used the proper time
relation, but you had to express the speed in terms of the unknown
travel time according to Earth-frame observers. Here, we do the same
problem but using the spacetime interval.

(a) We know that the distance to Alpha Centauri is 4 It-yr as measured
by observers on the Earth, so Ax = 41t-yr. From the statement of
the problem, we can see that At = 2yr. And since the astronauts are
present both at the launching of the rocket and its arrival at Alpha
Centauri, it follows that Az’ = 0. Using the interval, we have

(cAt)? — (Az)? = (cAt')2 - (A:U')2
= (cAt)? = (cAt')2 - (Aa?’)Q + (Az)?

41t-yr)?
Al = (2y)? 4 VD
= (A7 = (2) +(1lt—yr/yr)2 0
= 20y>
— At = 4.47y.

(b) The speed of the astronauts’ ship is then simply

Az Alt-yr/yr

=—" = = 0.891t- = 0.89c. .
V=R 1Ay 0.891t-yr/yr = 0.89¢ (3.5)
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As you might have guessed from this example, the relations from the
previous chapter (time dilation and length contraction) are both special
cases of the more general invariance of the spacetime interval. The proper
time relation, Eq. (2.3) corresponds to a situation where one of the observers
is at both events. Let’s say that the observer in the primed reference frame
is at both events (i.e., measures the proper time). Then Az’ = 0. The
distance Az (the distance between events as measured by the observer in the
unprimed frame) is simply Az = vAt (distance = speed x time). Eq. (3.4)
then becomes:

(cAt)? — (vAt)? = (cAt)? — 07
= (AD? (1—0%/P) = (At)?

= A = Aty/1 —v2/c2,

which is, in fact, the proper time relation Eq. (2.3) with At as the proper
time (since the primed observer is at both events) and with At as the two-
clock time. Similar arguments can be used to show that the length contrac-
tion relation, Eq. (2.7), is a special case of the invariance of the spacetime
interval for situations where At or At is zero.

3.3 World Lines and Spacetime Diagrams

The motions of particles, clocks, or whatever can be represented on a space-
time diagram. A spacetime diagram consists of a pair of perpendicular axes,
with the vertical axis representing time and the horizontal axis representing
x position in a particular inertial reference frame. The x-axis is the direction
of relative motion between this unprimed frame and another inertial frame
called the primed frame.

A plot of an object’s position vs. time on a spacetime diagram is called
the world line of the object. Three world lines are shown in Fig. 3.1; a
straight world line represents motion with constant velocity while a curved
world line represents accelerated motion. An event is represented by a dot
on the spacetime diagram.

When drawing a spacetime diagram, make sure you use appropriate
units. (Do not use meters for length!) For time (which we use as the
vertical axis on a spacetime diagram), we choose something appropriate to
the time scale of the problem, like years, seconds, nanoseconds, etc. Then
we must choose an appropriate unit of distance equal to that traveled by
light in the chosen unit of time. For example, suppose we choose one second
as the unit of time, then we would used one lt-s (the distance traveled by
light in one second) as the unit of distance. In these units the speed of light
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'« _— World line for a particle

An event

e
World lines for light

Figure 3.1: A spacetime diagram with three world lines. The two world lines for
light have slopes +1 and —1.

is ¢ = (11t-s)/(1s) = 1lt-s/s. In this method of handling the units, the
world line for a pulse of light must have a slope that is numerically equal
to +1 or —1. And no world line can ever have a slope with mag-
nitude less than 1; that would correspond to an object traveling
faster than light. Slopes can also be used to determine if the interval
between two events is time-like, light-like or space-like. If a line were to be
drawn connecting the two events, a time-like interval would correspond to a
slope with magnitude greater than 1, a light-like interval would correspond
to a slope with magnitude 1, and space-like interval would correspond to a
slope with magnitude less than 1 (note that in this last case, that the “line”
drawn between the two events can’t be the world line of any real object,
since nothing can travel faster than c).

Let’s use a spacetime diagram to display the world lines of the three-clock
thought experiment of Ch. 2, Section 2.4 (see Fig. 2.1 from that section and
Fig. 3.2 in this section). For example, put clock A at rest at x = 0 and clock
B at rest at x = 0.601t-s. The world lines for the stationary clocks A and
B are then vertical lines at x = 01t-s and = = 0.601t-s. Let clock C travel
with speed 0.60c in the positive z-direction. Because ¢ = 11t-s/s, clock C
passes through = = 0 at time ¢t = 0s, and it passes through x = 0.60 lt-s at
time ¢t = 1.0s. It has traveled a distance of 0.601t-s in a time 1.0s.

Notice in Fig. 3.2 that we have labeled the world line of clock C as the
t" axis. This is a general result: the world line of a particular observer (say,
someone traveling in a space ship) is the ¢’ axis for that observer. This can
be understood by considering a person on a spaceship holding a ball. The
world line for the ball is the same as the world line of the ship and person
since they are all moving together. From the perspective of the astronaut,
the ball remains right in front of him and isn’t moving anywhere, so it makes
sense that that astronaut will say that the location of the ball remains at
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t/

t(s)
World line
World line LO A for clock C

for clock A i
== — World line

0.5 for clock B

0 0.5 1.0

x (It-s)

Figure 3.2: World lines for the three clocks in the thought experiment of Sec-
tion 3.3

2’ = 0. And just as it is true that the points where x = 0 in the unprimed
frame define the t-axis, so it is that the points where 2’ = 0 in the primed
frame define the t'-axis.

Some comments are in order:

1. A world line is nothing more than a plot of time versus position. If
you ever find yourself stumped about how to plot a world-line, ask
yourself: “Where is the (whatever) at time ¢ = 0 (i.e., what is its
initial z-coordinate)? Where is it at time ¢ = 17 At time t =27 ...”
Then simply plot those points and connect them.

2. The slope of a world line is simply 1/v. This comes from the standard
relation: distance = speed X time, or equivalently, Ax = vAt. So
At = %Aaz. Practically, this means that if you have a ship moving at
a speed of, say, 0.5¢, then the slope will be 1/v or 2.0s/lt-s. When
plotting a world line, this means that you go up 2 and over 1 (or over
0.5 and up 1).

3. Don’t ever forget — nothing can travel faster than light, so there
should never be a world line on a spacetime diagram with a slope
whose magnitude is less than 1.

4. Remember: events are plotted as dots.

5. Label everything clearly.
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£ (s)
World line 2 Hoiiii...q C
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Figure 3.3: Spacetime diagram for situation discussed in Examples 1 and 3

Example 3.3 Spacetime diagram corresponding to Exam-
ple 1

Draw the spacetime diagram for the football scenario (Buffalo Bills
losing the football game) discussed in Example 1, using the reference
frame of the Earth/Moon. Show the world lines for Scott Norwood,
Jr., the girl and her father, and the TV signal. Also, show and label
the following events: A — girl sneezes, B — Norwood kicks the (un-
successful) field goal attempt, and C — girl and father see Norwood
kick the ball.

Solution: The world lines for Norwood and the girl /father are simply
straight vertical lines since they aren’t moving in the Earth-Moon
reference frame. If this isn’t clear, then answer these questions: If we
put the Earth at x = 0 at time t = 0, where is the Earth at time
t = 1s? Answer: still at £ = 0. At t = 2s7 Answer: still at x = 0.
The Earth’s world line is nothing more that a set of points where z
is always zero. As for the girl/father on the Moon, we already said in
Example 1 that they are about 1.31t-s away from the Earth.

We know from the problem that the girl/father see the kick 2s after
she sneezes. So, if she sneezes at t = 0 (it is arbitrary as to what we
choose as the ¢ = 0 time), then the TV signal arrives at ¢t = 2s. It
must have been sent from the Earth at an earlier time, and since it
travels at the speed of light, then the world line for the TV signal is a
45° line. The only thing left is to plot the three dots for the events.

Note that if you imagine a line between A and B, that line would have
a slope with magnitude less than 1 (i.e., too shallow), indicating that
nothing can travel between these two events, consistent with the result
in Example 1 that the interval is space-like and the corresponding
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t,

. 2 A World line
World line , for father &
for Norwood 1 World line S Ve daughter
on earth for alien on moon
x/
1
S
Figure 3.4: Extension of spacetime diagram in Example 3.
events can’t be causally linked.
3.4 Ordering of events — the relativity of simul-

taneity

Every event has a set of space and time coordinates. In Example 3 above, we
would say that the event A (girl sneezes) occurs at time ¢ = 0 and location
x = 1.31lt-s. Similarly, we can determine the location and times of events
B and C, all as measured by observers in the Earth-Moon reference frame.
Let’s add one more event to the scenario: let’s say that at time ¢ = 0, the
kicker Scott Norwood, Jr., takes a step just before attempting the fateful
kick. In Fig. 3.4 we have added this event and labeled it S. In the Earth-
Moon frame, we can say quite definitively that A and S are simultaneous
and come first, then B, then C. Also, A and C happen at the same location,
and S and B happen at the same location.

Special relativity helps us answer the following question: how does an
observer moving in a different reference frame view these same events? We
won’t worry here about the actual numerical values of ' and ' (the position
and time as measured by a different observer), but we can say quite a lot
about the ordering of events in space and time by looking at the spacetime
diagrams.

We have added another world line to Fig. 3.4, namely, the world line for
a hypothetical alien flying past the Earth just as Scott Norwood, Jr., takes
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a step before attempting the kick. This alien is monitoring the game to try
to understand human culture. We assume the alien is traveling at a speed
0.5¢; hence, the world line has a slope of 2.

We have already commented that the world line of an observer in a
primed frame is simply the ¢ axis for that frame, so we have labeled the
alien’s world line #'. But where should we put the x’-axis and what scale
should we put on it? It turns out that to satisfy the invariance of the speed
of light, we must draw the z’-axis at the same angle relative to the z-axis
as the angle of the t’-axis relative to the t-axis. This means the slope of the
x’-axis is equal to the speed v of the primed frame relative to the unprimed
frame.

Recall that the ¢'-axis represents points where ' = 0. It turns out
that 2’ is constant along any line parallel to the #'-axis. In other words,
lines parallel to the ¢'-axis are equal-location lines for the primed frame of
reference, just as the t-axis and all lines parallel to it are each lines of equal
location for the unprimed frame of reference. The same ideas work for events
on lines parallel to the x or 2’ axes; events on a line parallel to the z-axis
are simultaneous in the unprimed frame, and events on a line parallel to the
x’-axis are simultaneous in the primed reference frame.

We can use these ideas to “read off” coordinates for events in both
reference frames. As an example, let’s look at event C in Fig. 3.4. We have
already commented that in the unprimed frame, its x location is 1.3 1t-s and
its time is 2s. The coordinates of this event in the alien’s reference frame
are determined by drawing lines parallel to the 2’ and ¢’ axes (shown as
dotted lines in Fig. 3.4). The intersections of these construction lines with
the opposing primed axis gives the z¢ and tc coordinates. The rules for
determining coordinates can be summarized as follows:

1. To find z¢, draw a straight line through C parallel to the t-axis and
read off where it crosses the x-axis.

2. To find t¢ draw a straight line through C parallel to the z-axis and
read off where it crosses the ¢-axis.

3. To find 2, draw a straight line through C parallel to the ¢'-axis and
read off where it crosses the z’-axis.

4. To find t;,, draw a straight line through C parallel to the z'-axis and
read off where it crosses the t’-axis.

Using this type of construction, we can see that although events A and
C occur at the same place in the unprimed (Earth-Moon) reference frame,
event C happens to the left of the event A in the primed (alien) reference
frame. This is easy to understand: the alien is far from the Moon when
event A happens, so A is far “to the right,” whereas the alien is close to the
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Moon when event C happens, so from the alien’s perspective, C isn’t so far
to the right, i.e., smaller 2’ coordinate.

But what about the ordering of events in time? We have commented that
the invariance of the spacetime interval says that if two observers disagree
about distances, then they will have to disagree about time intervals as well.

In preparation for class: Look at the ' coordinates for events
S and A. In the Earth-Moon reference frame, these events are
simultaneous. What about in the alien reference frame?

We have said that any two events on a line parallel to the x’-axis are
simultaneous in the primed frame of reference. Similarly two events that
lie on a line parallel to the z-axis are simultaneous in the unprimed frame.
However two different events cannot lie both on a line parallel to the x-axis
and parallel to the 2’-axis. Thus two events that are simultaneous in one
frame cannot be simultaneous in the other frame. We explore this idea in
the following example.

Example 3.4 Simultaneity is Relative

Einstein showed, with the following thought experiment, that two
events which occur at the same time but at different places in one
frame, occur at different times in another frame.

Imagine a train moving past a station. By chance, lightning happens
to strike the front and back of the train at the same time according
to observers on the station platform. Light pulses from these strikes
travel toward the middle of the train, where a passenger observes their
times of arrival. Do the light pulses arrive simultaneously or does one
arrive before the other, and if so, which one?

Solution: Use a spacetime diagram, Fig. 3.5, with the station at rest
in the unprimed frame and the train at rest in the primed frame. The
x- and z’-axes both lie along the track. (Note: this does not mean
that the z- and a2'-axes are the same thing on a spacetime plot. The
x’-axis is not shown in Fig. 3.5, but remember that it is the mirror
image of the t’-axis about a 45° line; i.e., the angle between the t-
and t’-axes is the same as the angle between the z- and z’-axes.) The
world line for the middle of the station is shown as the t-axis.

Because all parts of the train are at rest in the primed frame, we draw
the world lines for the front and the rear ends of the train parallel to
the t’-axis. Also, in Fig. 3.5, we have chosen the world line for the
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Station
Rear of Fr01.1t of
Train Train
R F x (It-s)

Figure 3.5: Spacetime diagram for train of Example 4. (Light world lines shown
as dashed lines.)

passenger riding in the exact middle of the train to be the #’-axis. In
the primed frame the front and rear world lines are then equidistant
from the passenger, by definition.

The lightning strikes occur at points R and F on the world lines of the
rear and front of the train. Because each strike represents an event and
because these two events occur simultaneously in the station frame,
R and F must be drawn on the same horizontal line. We arbitrarily
choose this line to be at ¢ = 0.

The light pulses produced by the lightning strikes travel with speed
¢ = 1lt-whatever per whatever from the event F back toward the pas-
senger and from R forward toward the passenger. The pulse from F
is represented by a world line of slope —1 and the pulse from R is
represented by a world line of slope +1. Figure 3.5 shows that the
pulse from F arrives at the passenger’s world line (at Pr) earlier (i.e.,
at a smaller value of ¢') than does the pulse from R, which arrives at
Pr.

The passenger must conclude that the front strike occurred before the
rear strike because she is sitting in the middle of the train, equidistant
from R and F, and she knows the light pulses must have taken the
same time (in her frame) to reach her. By the same argument, an
observer on the station platform who was at the exact middle of the
train at ¢ = 0 when the strikes occurred, sees the pulses at the same
time. This is shown on the spacetime diagram by the fact that the
world lines of the pulses cross the world line of the middle of the station
at = 0 (event M) at the same time.
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Problems

1. If two events are separated by a time-like interval in one frame of refer-
ence, are they separated by a time-like interval in all frames of reference?
Explain.

2. A simple way of synchronizing two clocks at rest relative to one another
is to stand exactly halfway between them and emit light pulses toward
each of them at the same instant of time. Fach clock is then set to 0
when the synchronizing pulse reaches it.

(a) How does this scheme ensure that the clocks are started simultane-
ously?

(b) On a spacetime diagram show the world lines of two clocks at rest in
the unprimed frame of reference at x = 0 and at x = L, along with
the world lines of two synchronizing light pulses that start from the
midpoint and reach each of the two clocks at t = 0.

3. Events A, B, and C are shown on the spacetime diagram in Fig. 3.6.

Figure 3.6: Figure for Problem 3.

(a) Calculate the value of the squared interval for each pair of events,
ie., find I3, I3,, and I%,.
(b) Label each interval as time-like, space-like, or light-like.

(c) In the frame shown, event A occurs before B, which occurs be-
fore C. Which pairs of events could have their time-order reversed
(switching before and after) by choosing an appropriate reference
frame?
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(d) In the frame shown, event B occurs to the right of C, which occurs
to the right of A. Which pairs of events could have their space-
order reversed (switching left and right) by choosing an appropriate
reference frame?

(e) Which events could be a “cause” for which other events?

4. Fig. 3.7 shows a spacetime diagram with seven straight lines through
the origin labeled with capital letters A through G. Various events are
marked as points with small letters a through e. The x-t axes belong to
the Earth’s reference frame.

t B C D
A
b ec  #d
E
a
F
G‘
X

Figure 3.7: Figure for Problem 4.

(a) Which line is a world line of an object at rest relative to the Earth?

(b) Which line is a world line of a spaceship traveling at speed +0.3¢
relative to the Earth?

(c) Which line is a world line of a light pulse emitted by the spaceship
as it passes the Earth?

(d) Which events happen simultaneously in the Earth frame?

(e) Which events happen simultaneously in the spaceship frame?

(f) Which pairs of events are clearly separated by space-like intervals?
Which are clearly separated by time-like intervals?

5. For Example 4 in the text, show from the spacetime diagram in Fig. 3.5
that lightning hit the front of the train at a negative value of ¢, but that
lightning hit the rear of the train at a positive value of t’. Use the rule
for finding the ¢’ coordinate of an event to solve this problem. [Hint: you
might want to extend some of the axes in the negative direction.]
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6. Farmer Brown, at rest in his frame, carries a ladder through a barn.
According to Farmer Brown, the ladder measures 201t-ns. According to
observers at rest with respect to the barn, Farmer Brown and his ladder
are moving at a speed 0.80c (alternately, Farmer Brown sees the barn
moving at speed 0.80c). In the barn’s frame, the front door of the barn
is at x = 01t-ns and the back door is at = 16 1t-ns.

(a)

(b)
()

Calculate the length of the ladder as measured by observers in the
barn’s reference frame. According to these observers, will the ladder
fit within the barn?

Calculate the length of the barn as measured by Farmer Brown.
According to Farmer Brown, will the ladder fit within the barn?

Draw a careful spacetime plot for this situation, with appropriate
tick marks on the axes (labeled with numbers). Starting with the
barn frame, draw world lines for the entrance and exit of the barn
(i.e., the front and back doors). Draw also world lines for the front
and back of the ladder (which is moving as viewed in the barn
frame). The distance between the front and back of the ladder in
your plot should agree with your answer to part (a), and the slopes
of these lines should be consistent with the known velocities.

Label the following events on your diagram: A = front of ladder
enters the barn; B = front of ladder leaves the barn; C = back of
ladder enters barn; D = back of ladder leaves barn. Determine the
order of these events in time as viewed from the barn’s reference
frame. Is this result consistent with your answer to (a), i.e., whether
or not the ladder fits in the barn, according to barn-frame observers?
(Consider whether the back of the ladder enters the barn before or
after the front of the ladder leaves the barn.)

Determine the order of events A, B, C and D as viewed from Farmer
Brown’s reference frame. Is this result consistent with your answers

to (b)?
Based on your answers for this problem, can you see how relativistic
time-ordering (i.e, the fact that different observers do not necessar-

ily agree on the ordering of events in time) is necessarily linked with
length contraction?
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Figure 3.8: Figure for Problem 7.
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The Earth is 8 lt-min from the Sun. An astronomer on Earth, looking
through a telescope, notices the sudden appearance of a giant solar flare
on the Sun’s surface. At precisely that instant (when the astronomer
detects the flare), a Klingon space ship whizzes over his head at speed
0.8c, heading straight for the Sun.

(a) On the facing page, construct a spacetime diagram for this situation.
Label the following three events: A: Klingon ship hits Sun, B: flare
occurs on Sun, and C: Klingon ship passes Earth. (Note that event
B is the occurrence of the flare on the Sun, not the detection of the
flare by an astronomer on Earth.)

(b) Order the events A, B, C, from earliest to latest, according to Earth-
based observers.

(c) Calculate the time intervals At between each pair of events (AB,
AC, and BC), according to Earth observers.

(d) Calculate the interval At’;, between events B and A, but now ac-
cording to Klingon ship observers.

(e) Classify each of the intervals as space-like, time-like or light-like.

Two spacecraft, Aaaak and Blech, are carrying aliens from the planet
Zortox to Earth. Both spacecraft are traveling at a speed of 0.6¢ relative
to the Earth, with Aaaak in front. In the Earth’s frame, Aaaak and Blech
are a distance 8.01t-s apart. At the moment that Aaaak passes Earth,
the Zortoxians aboard Aaaak dump its garbage. At a time 10.0s later
(as measured by earthlings) Blech dumps its garbage.

(a) Draw a spacetime diagram in Earth’s frame that includes world-
lines for Earth, Aaaak, and Blech. Indicate and label the events
corresponding to the garbage dumps.

(b) How far has Blech traveled during the 10.0 s between the two garbage
dumps measured by earthlings?

(c) What is the distance between the two garbage dump events mea-
sured by earthlings?

(d) What is the distance between the two garbage dump events mea-
sured by the Zortoxians on board their ship? Warning: this is not
the same as the distance between the two garbage piles. Hint: in
the spacecraft frame, where did the first event and the second event
happen?

(e) Calculate the time interval between garbage dump events measured
by the Zortoxians on board their ship.
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9.

10.

A train of rest length 401t-ns moves along the tracks at 0.8¢ and is
struck by two lightning bolts. One bolt hits the front of the train and
the other hits the back. According to observers on the tracks the bolts
are simultaneous.

(a) How far apart did the lightning bolts strike according to observers
on the tracks?

(b) According to riders on the train, how much time passed between
the striking of the lightning bolts?

(¢) According to riders on the train, which lightning bolt struck first?

Joe holds and lights a sparkler, and one minute later, it goes out. Cheri,
riding in a rocket past these events, notes that, as measured in her frame,
the sparkler burned for 100 seconds.

(a) How far apart in Cheri’s frame did these two events (lighting and
going out) occur?
(b) As measured by Cheri, how far did the lit sparkler travel, and how

fast was it moving?

(c) As measured by Joe, how fast was Cheri traveling during the one
minute of sparkler light, and how far did she travel?
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The spacetime diagram in the figure shows the world lines of the Earth,
a star, and a rocket, as well as several labeled events.

12

10

Farth

t (yrs)

z (It-yrs)

Figure 3.9: Figure for Problem 11.

(a) On the diagram, label as “A” the event “Rocket arrives at Star.”
(b) Determine the speed of the Rocket, as measured by Earth observers.

(c) Determine the time between passing the Earth and passing the Star,
as measured by Rocket observers.

(d) Determine the distance between the Earth and the Star, as mea-
sured by Rocket observers.

(e) Draw the world line of a lost satellite passing the Earth at the same
time as the Rocket, but going away from the Star at a speed that
is % of the Rocket speed (as determined by Earth observers.) Label
this line “Satellite.”

(f) Order the events A, B, C, D, from earliest to latest, as observed in
the Earth-Star reference frame.

(g) Order the events A, B, C, D, from earliest to latest, as observed in
the Rocket reference frame.

(h) In some reference frame, the events C and D are simultaneous. In
that frame, what is the distance between events C and D?

(i) Explain why no one could ever measure the proper time between
events C and D.



Chapter 4

Relativistic Momentum and
Energy

4.1 Introduction

So far in our discussions of relativity, we have taken a very simple principle
— the Principle of Relativity, which states that the laws of physics are the
same for observers in any inertial reference frame — and have used this
principle to change completely our notions of how time and space work.
But we are not yet done looking at the implications of this principle. It will
be necessary to generalize the classical relations for energy and momentum
to account for the strange behavior that we have already seen at relativistic
velocities. And the new relativistic equations for energy and momentum
carry significant implications that change our notions of energy and matter.
This discussion leads to what is probably the most famous equation in all
of physics — namely E = mc?> — as well as the basic principle behind
nuclear power generation. Of course, this is also the principle behind nuclear
weapons, so it can be argued that this result fundamentally changed society.
But this is also the principle behind energy generation in stars (including
our own Sun); there would be no life on this planet without this principle.
But before we discuss relativistic energy and momentum, we will take
a closer look at the concept of velocity. If observers in different reference
frames don’t agree on the results of measurement of lengths and time inter-
vals, they won’t agree on the results of their determinations of velocities.

4.2 Relativistic Velocity Transformations

Let’s say that two spaceships leave Earth. The USS Zaphod leaves the
Earth going in one direction with a speed 0.8c relative to Earth. The USS
Beeblebror leaves Earth going in the opposite direction with a speed 0.8¢
relative to Earth. What is the speed of the Zaphod from the reference frame

89
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Primed v
observer B

/ )
Ugy; from B’s frame

©

% Unprimed Uohj from A’s frame

observer A

Figure 4.1: An object moving in the z-direction relative to both unprimed and
primed frames. The speed of the object is measured to be ugp;j from
the reference frame of observer A and ugbj from the reference frame
of observer B.

of the Beeblebroxz? Based on classical assumptions, you might expect the
answer to be 1.6c. But this conflicts with Einstein’s theory of relativity
which states that no object can travel faster than the speed of light relative
to any other observer. It is clear that it is necessary to replace classical laws
for addition and subtraction of velocities with a more general, relativistic
transformation.

A relativistic approach to velocity addition and subtraction was already
hinted at earlier in Chapter 2. The principle of invariance of the speed of
light requires that all observers (in any reference frame) measure the same
speed for a pulse of light — we can’t simply add and subtract velocities.
On the other hand, common experience shows us that for non-relativistic
speeds, simple addition and subtraction work fine. So, we need a velocity
transformation relation that reduces to the classical result for small speeds,
but which prevents anything from traveling faster than the speed of light.
It turns out that this can be accomplished by taking the classical result and
dividing by a relativistic correction that becomes significant (i.e., not just
1) for speeds close to c.

Figure 4.1 shows the scenario that we are discussing. Two reference
frames are defined: an unprimed frame denoted by observer A and a primed
frame denoted by observer B on a spaceship moving with a speed v relative to
observer A. They are both measuring the speed of the same object. Observer
A says the object is moving with a speed wu,,; while observer B says the ball
is moving with a speed uy,;.

The question is: How are uqpj, ugbj and v related? The answer is given
by a wvelocity transformation equation,

w4 v
ob] (4.1)

L+l v/

Uobj =
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Equation (4.1) is used to relate an object’s velocity in one frame to that as
viewed in another frame.

We won’t derive Eq. (4.1) rigorously here. Rather, note that if the object
is a pulse of light, then u’obj = ¢, and Eq. (4.1) reduces to

=c. (4.2)

c+v c+v c+v
Uobj =

14 cv/c? - 1+v/c:C c+v

Both observers measure the object to have a speed ¢, so, the invariance of
the speed of light is preserved in this transformation.

Note that the numerator in Eq. (4.1) is the result that you would get
classically, whereas the denominator is a relativistic correction. Also, note
that if either the object or the primed observer are traveling at speeds that
aren’t a significant fraction of the speed of light, then the denominator of
Eq. (4.1) is very nearly 1, so we recover the classical result for “everyday”
speeds.

We’ll show how to work with this relation in the next example.

Example 4.1 Baseball velocity addition

Bucknell Bison baseball pitcher Christy Mathewson throws a blazing
fastball while riding on a really fast train. From his reference frame
(i.e., the train’s frame) the ball moves toward the front of the train
with a speed up,y = 0.7c. The train itself is moving relative to the
ground with speed v = 0.8¢c. How fast is the ball moving relative to
someone on the ground?

Solution: Classically, the speed as viewed from the ground would be
Upan + v or 1.5¢. (This is the numerator of Eq. (4.1).) But, of course,
this isn’t possible in a relativistic universe where nothing goes faster
than c. Using Eq. (4.1) we find

upn +v 0.7¢+0.8¢
1+uf v/ 1+0.7x0.8

= 0.96¢. (4.3)

Uball =

Note that relativistic correction keeps the speed less than c.

Exercise: What if the ball were a beam of light? How fast would it be
moving from the train’s reference frame? How fast from the ground’s
reference frame? Show that Eq. (4.1) gives the correct result for this
case.
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If the problem gives you the speed as measured by the unprimed ob-
server, you can use the following inverse transformations to get the speed as
measured by the primed observer:

’ uobj — U
= . 4.4
uObJ 1— Uobj'U/CQ ( )

You don’t really need to write down these relations or try to figure out
which speed is v, which speed is ucnj, and which speed is ugbj. There is a
very simple way of handling all of these problems. No matter which velocity
you are looking for, the answer is always:

classical result

relativistic correction’

where the relativistic correction is simply “1+(product of other two speeds
divided by ¢?)” or “1 — (product of other two speeds divided by ¢2).”. You
will be given two velocities, and you’ll be looking for the third one. Just
figure out the answer classically, then divide by the correction. The only
question then is whether to use the “4+” or “—” in the correction. The rule: if
you added magnitudes of velocities in the numerator, then you use the “+” in
the denominator, and if you subtracted magnitudes in the numerator, then
you use the “—” in the denominator. This will take care of any velocity
addition or subtraction that you need.

4.3 New definitions for energy and momentum

You have learned previously that in interactions among low velocity par-
ticles in which the only forces are the interparticle forces (i.e. no external
forces), the total momentum ), m;u; and the total mass ), m; are con-
served. (As in Chapter 3, we use the symbol u to refer to the velocity of
some particle as viewed from a reference frame, reserving v for the velocity
of the reference frame itself.) For example, when particle 1 collides with
particle 2 and particles 3, 4, and 5 emerge from the point of collision, we
have two conservation laws:

P1+ P2 = P3+Pa+ps (4.5)
and
my1 +mg = m3+mg +ms Caution: Only valid classically! (4.6)

After Einstein discovered the velocity transformation law, Eq. (4.1) and
(4.4), he recognized that the classical definition of momentum (§ = m)
was incompatible with Eq. (4.5) and the Relativity Principle. That is, for
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Before ! After

0.8¢ : ug
Ol -~

Figure 4.2: Collision discussed in Example 2.

a given collision, classical momentum could be conserved in one frame but
not another. An example will illustrate this:

Example 4.2 Say goodbye to the classical expression for mo-
mentum.

(For this example, we use the natural units of MeV, MeV/c, MeV /c?
and c¢. More detail on these units appears section 4.8.) Figure 4.2
shows a particle of mass 9 MeV /c? and speed 0.8c striking a stationary
particle of mass 5MeV/c?, producing a single particle. (a) Calculate
the mass and speed of the single particle after the collision. (b) Show
that classical momentum is not conserved in the frame in which the
final particle is at rest.

Solution: The classical laws Egs. (4.5) and (4.6) would yield

Eq. (4.5) = 9MeV/c? x 0.8¢ +5MeV/c? x 0 = mzug
72MeV/c

———— =0.514
14 MeV/c? ¢

= uz =
and
Eq. (4.6) = 9MeV/c® +5MeV/c? = mg3
= mg=14MeV/c%

Transform now to a frame in which the final particle is at rest. This
clearly means that we should view the collision from a spaceship trav-
eling with particle 3 at 0.514c¢ to the right, relative to the original
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Before E After
0.486¢ 0.514c : uhy =0
—_— - :

Figure 4.3: Collision discussed in Example 2 as viewed from rest frame of product
particle.

observer. Equation (4.4) gives

ug—v  0.514¢—0.514¢c

1—wugv/c2  1-—0.5142
, us — v 0—0.514¢c
= = = —0.514
% T T uu/@ T T-0x 0514 ¢
- 0.8c — 0.514
wy = —2 Y c . — 0.486¢

1—ugv/c®  1—08x0.514

In the new primed frame, the collision appears as in Fig. 4.3. Checking
the classical momentum conservation law in the new frame gives

9MeV/c? x 0.486¢ + 5 MeV /c? x (—0.514c) = mg x 0. (4.7)

But the left side of this equation here works out to be 1.80 MeV/c
which is NOT equal to the right side (which is 0). So, classical mo-
mentum is not conserved in this new frame. Therefore, either (a)
conservation of momentum isn’t a valid law of physics; (b) the Rela-
tivity Principle (invariance of the laws of physics) is violated; or (c)
we need a new definition for momentum.

You probably won’t be surprised to hear that Einstein wasn’t about to
give up on the Relativity Principle because of this argument. After all, he
had already redefined time and space to make the Principle work. And
although the classical expression for momentum does not lead to invariance
for high velocity collisions, there are attributes of particles involving their
masses and velocities that do produce invariant conservation laws. These
quantities are called relativistic momentum and relativistic energy, or more
simply, momentum and energy. They are defined by
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Definition of relativistic momentum, (4.8)

E=————— Definition of relativistic energy. (4.9)

Einstein was motivated to define momentum and energy in this way
because conservation of momentum and energy defined in this new way are
invariant, as we will show with an example below. Of course, motivation
is all very nice, but the most compelling reason that the momentum and
energy of a particle must be defined this way instead of in the classical way
is because experiments with high-speed particles it is these new relativistic
quantities that are conserved, and not those given by the classical definitions.

Let’s explore this invariance by redoing Example 2 using Einstein’s new
definitions and the relativistic conservation laws:

ﬁbefore = ﬁafter (410)

Eboforc = Eaftor (4 1 1)

Example 4.3

Figure 4.4 shows a particle of mass 9 MeV/c? and speed 0.8c striking
a stationary particle of mass 5MeV/c?, producing a single particle
of mass 16 MeV/c2. You might not be too happy here with the final
particle having a mass of 16 MeV /c?, but hold on a little longer — we’ll
explain this shortly. (A little preview — this might be a good time to
take a pen and scribble Eq. (4.6) out of existence.) In the next chapter,
we’ll learn more rigorously how to determine the correct attributes of
the final particle. Here we just want to check the conservation laws.
(a) Check the conservation of relativistic momentum and relativistic
energy in the rest frame of the 5MeV/c? particle. (b) Check the
conservation of relativistic momentum and relativistic energy in the
rest frame of the 16 MeV /c? particle.

Solution: (a) We will use the relativistic definitions and conservation
laws given in Eqs. (4.8)—(4.11). Conservation of momentum gives

9MeV/c? x 0.8¢ o 16 MeV /c* x 0.6¢

: 4.12
V1-0.82 V1 —=10.62 (4.12)
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Before : After

08¢ 0.6¢
_ > @ : — >

Figure 4.4: Collision discussed in Example 3.

and conservation of energy gives

9MeV/c? x c? n 5MeV/c? x ¢ 16MeV/c? x ¢?
V1 —0.82 V1—02 V1 —0.62
The momentum equation gives 12 MeV /c = 12MeV /¢, while the en-

ergy equation gives 15 MeV 4 5 MeV = 20 MeV. So the conservation
laws are satisfied in this frame.

(4.13)

(b) Now, transform to a frame in which the final particle is at rest,
by viewing from a spaceship moving at 0.6¢ to the right. The velocity
transformations give

uig —v _ 0.6c—0.6c

A _ _ 4.14
H16 1 — uygv/c? 1—0.62 0 (4.14)
, U — v 0—0.6¢ 3
_ _ — _06c=—2 4.15
s 1—uzv/E  1-0x06 c=—3¢ (A1)
- 0.8c—0.6c 5
Wy = 07U ST 0 L 0.385c  (4.16)

1—ugv/c2  1-08x06 13

In this new frame, the collision appears as in Fig. 4.5. When we check

Before : After

5 3 : A
13¢ 5¢ ' uy =0
— — :

Figure 4.5: Collision discussed in Example 3 as viewed from rest frame of product
particle.
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the relativistic conservation laws in this new frame, we find:

9MeV/c? x 5¢/13  5MeV/c? x 3¢/5 16 MeV/c? x 0

4.17
1—(5/13)2 1—(3/5)? V1 —0? ( )
9MeV/c? x 2 5MeV/c? x 2 16MeV/c? x c?
= (4.18)
1—(5/13)2 1—(3/5)2 V1—02
The momentum equation gives
1 1
ZSMeV/c— ZSMeV/c: 0, (4.19)
which checks out, while the energy equation gives
2
% MeV + Z5 MeV = 16 MeV (4.20)

which also checks out. This means the conservation laws are true in
both the original and the new frame, and the Relativity Principle is
upheld with Einstein’s new definitions.

This may be a nice argument on paper, but does it work in practice?
Are relativistic momentum and energy, rather than classical momentum and
mass, really conserved in particle interactions? The answer is an emphatic
YES! In countless interactions observed in high-energy particle accelerators,
relativistic momentum and energy are always found to be conserved.

4.4 Another Invariant

We now have relativistic expressions for energy and momentum. It turns out
that these can be combined to form an invariant, just like we combined dis-
tance and time to get the invariant spacetime interval. Recall from chapter
4, we defined the square of the interval as

I? = (cAt)? — (Az)?. (4.21)

We can combine energy and momentum of an object or particle in a similar
manner to get an invariant:

E\? P\ 2
2
== —(=) . 4.22
mn < c2 > ( c ) (4.22)
Given any object or particle with energy £ and momentum p as measured by

an observer in a reference frame, this observer can easily calculate the value
of m for that object. If a different observer is in another reference frame
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(labeled with “primes”) and determines E’ and p’ for the same particle, she
will find that if she calculates

(m)* = <Z)2 - <i/>2, (4.23)

then she will get exactly the same value for m’ that the first observer found
for m. In other words
m=m/, (4.24)

E% — (pe)? = (E')2 - (p'c)2 . (4.25)

In the same manner that we used the invariant spacetime interval to relate
Az and At as measured in one reference frame to Az’ and At' in another
reference frame, we can use the invariance of m to relate £ and p in one
frame to E’ and p’ in a different frame.

What is this invariant m? This is simply the mass of the object. In
words, the invariance expressed in Eqs. (4.22-4.25) states that all observers
agree about the mass of an object.!

We can rewrite Eq. (4.22) in a slightly more convenient form

E% — (pc)? = (mc?)?. (4.26)

As we'll see in the next chapter, this is actually the most useful of all the
energy and momentum relations. It applies to every particle in every situ-
ation. (We'll see that Egs. (4.8) and (4.9) aren’t very useful for ‘particles’
of light.) In the homework for tonight, you’ll show that this relation comes
very easily from the relativistic definitions for energy and momentum (4.8)
and (4.9).

4.5 Rest Energy and Kinetic Energy

Let’s look more closely at what we called the relativistic energy of a particle
in Eq. (4.9). If the particle is at rest, so that u = 0, the energy reduces to
E = mc?, perhaps the most famous formula in all of physics. So we discover
that a particle has energy even when it’s not moving! This energy is called
the rest energy, Ey. That is

Eoy = mc?. (4.27)

You may hear people saying that in relativity, “a person’s mass increases as (s)he
approaches the speed of light.” (In fact, it used to be common for physicists to say
this.) This is an unfortunate claim. What they are doing is saying, “Well, since p =
mu/+/1 —u?/c?, we're going to artificially call m/4/1 —u?/c? the relativistic mass so
that we can hold on to the p = mu definition of momentum.” There is no reason to do
this — there is nothing in relativity that requires us to redefine mass and, in fact, mass is
an invariant.
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This is a remarkable result! Consider an apple with a mass of 100 g = 0.1 kg.
Einstein says that this apple has an energy at rest of Fy = 0.1kg x (3 x
108)2 = 9 x 10'® J! This is a huge amount of energy. Let’s compare this to

a classical energy.

You know that the classical kinetic energy of a particle is K5, = %va.

For the 0.1 kg apple falling at 10m/s we get K¢lass. = 5J. This is the energy
that the apple has because it is in motion. In relativistic physics, kinetic
energy is not expressed as K = %va, but it is still defined as the energy
that a particle has because it is in motion. The relativistic kinetic energy
is the difference between a particle’s energy when it is moving and its rest
energy,

2
me 9

K=E-mc®=—-— —mc’. (4.28)

N

This doesn’t resemble the classical expression for kinetic energy K jass. =
%mvz (or, since we use v for the velocity of the frame and wu as the velocity
of the particle, K = %muQ). Since we know that the classical expression for
kinetic energy is valid in the low-speed regime, the relativistic kinetic energy
given be Eq. (4.28) must somehow reduce to the classical expression when
the speed of the particle is small compared to the speed of light. We show
the connection between the relativistic and classical forms of kinetic energy
in the next example.

The relativistic expressions for energy and kinetic energy have amazing
consequences. In collisions of high speed particles, or in radioactive decays,
it is the total energy of a system of particles that is conserved, not the mass.
In these processes, rest energy (mc?) can be converted into kinetic energy,
and vice versa. In a decay, the loss of a small amount of mass corresponds
to the loss of a huge amount of rest energy, which will be manifested in a
huge increase in kinetic energy.

Example 4.4 Relating relativistic and classical expressions
for kinetic energy

Use the binomial approximation in Eq. (4.28) to find an approximate
expression for K when u is much smaller than ¢, i.e., when u/c < 1.
(The binomial expansion states that (1 —e)~%/2 ~ 1+ ge+ - if e is
small.)

Solution: We write 1/1/1 — u2/c2 as (1—u?/c*)~1/? so that Eq. (4.28)
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becomes
K = mcd (1 — u2/02)71/2 — me?
1 2
— me? <1+2u2+...>—mc2 (4.29)
c
1
~ fmu2,
2

where in the last line we have assumed the classical limit in which
u/c < 1. Thus we see that the classical expression for kinetic energy
is only a low-velocity approximation to the correct expression, given
by Eq. (4.28).

4.6 Photons: Particles with Zero Mass

How do we deal with the energy and momentum of light? As you will see
next semester in PHYS 212, the same year that Einstein published his first
paper on Special Relativity, he also proposed that light must be considered
to be composed of particles which are now called photons. (This was the
first of the three 1905 papers that we discussed at the beginning of Chapter
2.) Since light always travels at a speed ¢ in a vacuum, then photons in a
vacuum must travel at that speed regardless of the reference frame of the
observer. But if we look back at Eqs. (4.8) and (4.9), we find that the
denominators of both equations are zero for a particle moving at the speed
of light, and clearly a photon cannot have infinite momentum or infinite
energy.

The only way to resolve this dilemma is to postulate that photons are
particles with zero mass (m = 0). Equations (4.8) and (4.9) are still not very
useful in this case, since a fraction which has zero in both the numerator
and denominator is undefined. However, with zero mass these equations no
longer imply infinite energy and momentum for particles moving at light
speed.

For a massless particle (such as photons), Eq. (4.26) can be rewritten
for m =0 as

E = |plc  for massless particles only. (4.30)

Remember, Eq. (4.30) is valid only for massless particles.

4.7 More experimental evidence

Now that we have introduced the relativistic relations for energy and mo-
mentum, we can discuss some additional pieces of evidence that Einstein’s
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theory of relativity is, in fact, correct. The following examples can be added
to those presented in Chapter 2. Remember that if even one of these exper-
iments had disagreed with Einstein’s theory, then the entire theory would
have to be thrown out since everything is internally consistent.

e Particle accelerators. As we already discussed in Chapter 2, sub-
atomic particles are frequently accelerated in high energy experiments
to speeds very close to ¢, but no one has ever managed to accelerate
a particle with mass to a speed greater than c¢. There’s more here,
though: as the particle’s speed (relative to the laboratory) gets closer
and closer to ¢, the amount of energy that has to be added to increase
the speed further gets larger and larger, diverging as the speed ap-
proach c. For instance, the amount of energy that needs to be added to
accelerate a particle from 0.98¢ to 0.99¢ has been found experimentally
to be much larger than the energy to accelerate the same particle from
0.97¢ to 0.98¢, and in fact, much larger than that predicted classically.
As is the case with all other tests of relativity, the amount of energy
to be added agrees perfectly with Einstein’s predictions. Homework
problem 7 investigates this further.

e Collisions of high-energy particles. When subatomic particles are
slammed into each other with high energies, new particles are actu-
ally created that weren’t there before the collision. These collisions
are converting kinetic energy (KE) into matter, and this is done all
the time in particle accelerators. (This is, in fact, the main tool that
physicists use to study massive subatomic particles.) This is an ex-
perimental result that simply cannot be explained classically. Once
again, though, the results agree perfectly with Einstein’s theory. We
will be discussing this in more detail in Chapter 5.

e Matter-to-KE conversions. One of the most convincing and most
dramatic tests of Einstein’s theory of relativity occurred on July 16,
1945, in New Mexico when the first atomic bomb was exploded, con-
verting matter into a horrifying amount of kinetic energy (don’t forget
that factor of ¢ in the famous E = mc? equation). Since then, there
have been quite a few additional such demonstrations of Einstein’s
theory. (And again, the quantitative aspects of these demonstrations
agree perfectly with the theory.)

It isn’t necessary to explode a bomb to convert matter into energy.
Nuclear energy has found peaceful applications in the area of power
generation. (There is a nuclear power plant in Berwick, PA, in fact,
which you can see easily if you drive on Rt. 80 toward New Jersey,
shortly after passing Bloomsburg). We will discuss nuclear power gen-
eration more in the next chapter (including fusion power — still be-
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ing developed — which doesn’t produce any long-lasting radioactive
waste).

4.8 A note on units

When working with energy and momentum for small, subatomic particles
(the ones that are most typically traveling at relativistic speeds), it is con-
venient to define a unit of energy called the “electron volt” (eV for short).
One electron volt is the kinetic energy gained by an electron when acceler-
ated through a 1 volt potential difference. (You’ll learn more about this in
PHYS 212.) Quantitatively, 1eV = 1.6 x 107° J. An analogous energy unit
might be a “superball-meter” — the amount of kinetic energy gained by a
superball when dropped 1 m.

For high energy particles, the energies can get into the thousands, mil-
lions or billions of electron volts, so we also define 1keV = 103 eV, 1 MeV =
10%eV, 1 GeV = 10%eV.

Units for mass and momentum are also defined in terms of energy in
relativity. For mass, we use eV /c? — “electron volts per ¢” — or keV/c?,
MeV/c2, GeV/c?. For momentum, we use eV /c (or keV/c, MeV/c, GeV/c).
For example, an electron has a mass of 511 keV /c?; conceptually, this means
that an electron has a rest energy of 511 keV, or that its mass — if converted
completely into kinetic energy — would produce 511keV of kinetic energy.

Warning: when using these units, don’t throw any numbers in for the
¢ — it is part of the unit. So, the mass of an electron should be writ-

ten as “511keV/c?” (or 0.511 MeV/c?), not as 5HkeV-AH3-0-<108m/s}2 or
S keN /{1 Hos/n1?,
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4.9 Summary

The various equations introduced in this chapter are summarized as in Table
4.1.

Table 4.1: Relativistic formulas for energy and momentum.

Definition of F= mii Definition of o mc
momentum: V1—u2/c? energy: V1—u2/c2

Velocity in

Energy in terms t f pc’

! o B2 - erms of energy i= P
o (rinomen =pc+mc and momentum: E
and mass: (See Problem 4.6.)

Energy in terms
Definition of ) of momentum E=|plc
kinetic energy: K =FE—mc for zero-mass P
particle:
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Problems

1. Duck Dodgers hops in his spaceship and leaves the Earth at a speed 0.6¢
in an attempt to reach the newly discovered Planet X before aliens from
Mars.

(a)

Mission control on Earth sends an encoded message (a flashing bea-
con) to Duck Dodgers warning him about the progress of the Mar-
tian ship. The light pulses travel at a speed c relative to observers
on the Earth. How fast are the pulses traveling relative to Duck
Dodgers?

Duck Dodgers doesn’t understand the message that he received, so
he sends a radio message back toward the Earth asking for clari-
fication. The radio signal is traveling at a speed ¢ relative to the
Duck. How fast is the signal traveling relative to observers on the
Earth?

The radio message is intercepted by the Martian who is behind
Duck Dodgers but traveling in the same direction at a speed 0.8¢
relative to the Earth. How fast is the radio message going relative
to the Martian?

The radio message is also intercepted by one of the Martian’s mon-
sters who is traveling back toward the Earth to attack. The monster
is traveling at a speed 0.9c¢ relative to the Martian. How fast is the
radio signal relative to the monster?

2. A particle travels at speed 0.50c relative to Captain Kirk. Mr. Spock is
traveling at a speed 0.70c relative to Captain Kirk, in the same direction
as the particle. Calculate the speed of the particle relative to Mr. Spock.

3. A proton’s velocity is measured to be 0.6¢ relative to an observer on
earth.

(a)

(b)

A rocket is traveling in the same direction as the proton, with a
speed 0.8c¢ relative to the proton. Determine the speed of the rocket
relative to earth.

A rocket is traveling in the opposite direction as the proton, with a
speed 0.8c¢ relative to the proton. Determine the speed of the rocket
relative to earth.
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4. After traveling on vacation to Betelgeuse to witness a supernova, Fred
and Ethel are returning home, traveling at a speed 0.75¢ relative to and
toward the Earth. Ethel is particularly anxious to get home and see
her new great-great-great-great-great-great-great-great grandson, so she
hops on the emergency shuttlecraft, which leaves Fred’s ship traveling at
a speed of 0.75¢, relative to Fred. How fast is Ethel’s shuttle traveling
relative to the Earth?

5. A particle of mass 3m, moving at speed 0.60c in the positive x-direction,
collides with and sticks to a particle of mass 2m originally at rest. As-
sume a head-on collision.

(a) Calculate the initial total momentum before impact, using the clas-
sical definition, p = mu, for momentum.

(b) Assuming conservation of mass as well as classical momentum, find
the velocity of the composite particle of mass 5m after the collision.

(¢) Now transform to a primed frame in which the particle of mass 3m
is at rest. Use the relativistic velocity transformation to compute
the velocities uj,,, uh,,, and uf,, in the primed frame.

(d) Still in the primed frame, check whether momentum mu’ is con-
served by computing the total momentum before the collision and
the total momentum after the collision.

6. Use Egs. 4.8 and 4.9 to show that the velocity of a particle expressed in
terms of relativistic energy and momentum is u = pc?/E.

7. An electron is accelerated from an initial velocity u; = 0.98¢ to a final
velocity ug = 0.99c.

(a) Calculate the change in the electron’s kinetic energy in units of
MeV. (Recall that meectron = 0.511 MeV /c2.)

(b) Repeat your calculation using the classical expression for kinetic
energy. The classical expression is incorrect at these speeds, and
you should see a drastically different answer from that which you
obtained in part (a).

8. Electron A has a total energy of 1.0 MeV. Electron B has a kinetic energy
of 0.25MeV. Electron C has a kinetic energy of 0.75MeV. Electron D
has a momentum of 1.0 MeV /c. For each of the electrons A through D,
determine its energy, momentum, kinetic energy, and speed.

9. A certain particle has a total energy of 1.20 MeV and a momentum of
0.95MeV/c. Calculate the particle’s mass, kinetic energy, and velocity.
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10.

11.
12.

13.

14.

15.

16.

17.

18.
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Compute the momentum and velocity of a proton that has a total energy
equal to 7 times its rest energy. (Mmproton = 938 MeV/ c2)

Combine Egs. (4.8) and (4.9) to derive Eq. (4.26).

Show, from Eq. (4.26) and the result of problem (6) that any massless
particle moves at the speed of light and that if a particle moves at the
speed of light it must have zero mass.

A proton (mass 938 MeV/c?) is traveling at velocity 0.60c in the +z
direction relative to a spaceship which itself is traveling at velocity 0.80c
in the 4z direction relative to Earth. Calculate the velocity and then the
energy and momentum of the proton as measured in the Earth frame.

A particle’s energy and momentum in one frame are 41 MeV and 40 MeV /¢
respectively. Find the particle’s energy and momentum as measured in
a different frame in which the particle’s speed is v’ = 0.8c.

Given a particle with E4 = 21 MeV and p4 = 15MeV/c as measured in
reference frame A, and Eg = 20 MeV as measured in frame B, determine
the mass mp and momentum pp of the particle as measured in frame B.

The Fermi National Accelerator Laboratory (Fermilab) is located outside
Chicago, Illinois, and is one of the world’s largest particle accelerator fa-
cilities. At Fermilab, protons (mass 938 MeV/c?) are given huge amounts
of energy and achieve velocities that are nearly the speed of light.

(a) Prior to a recent upgrade, protons at Fermilab could reach speeds
that were only 163 m/s slower than the speed of light. How much
energy is required to get a proton from rest up to the speed u =
¢—163m/s?

(b) After the upgrade, the protons were able to reach the speed u =
¢—132m/s (a whopping increase of 31 m/s). How much additional
energy is required to get this 31 m/s increase?

(¢) The Large Hadron Collider currently being developed at CERN (a
particle accelerator facility in Europe) is designed to get protons up
to an energy of 7.0TeV. (1TeV = 10'2eV). Determine u/c, the
ratio of the speed of the proton to the speed of light (note that u/c
is NOT equal to 1!)

A certain J-boson has mass of 150 MeV/c?, speed of 0.8¢c, and total
energy of 250 MeV. Determine the J-boson’s momentum and kinetic
energy.

A proton (mass 938 MeV/c?) traveling down a beam pipe at Fermilab is
determined to have kinetic energy of 1.2 GeV. Determine this proton’s
momentum and speed.
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19. An evil genius fires a rocket into a star, destroying the star. Ten minutes
later, as measured in the reference frame of the star, debris thrown out
from the explosion demolishes a populated planet a distance 7lt-min
from the star, as measured in the star/planet frame. Simultaneous with
the explosion (according to the star/planet reference frame), the Starship
Enterprise is 5 1t-min from the star, on the opposite side from the planet.
The Enterprise is heading toward the star/planet system with a speed
of 0.6¢ relative to the planet and star.

(a)

(b)

()
(d)

Draw a spacetime diagram for this situation. Take the star/planet
reference frame as the unprimed frame, and draw the world lines
of the star and the planet, showing that they are 7lt-min apart.
Indicate the destruction of the star as event A on your spacetime
diagram, and indicate the destruction of the planet as event B on
your spacetime diagram. Also, draw the world line for the debris
sent from the star to the planet.

Draw the world line of the Starship Enterprise on your spacetime
diagram, showing both the velocity of the spaceship and the correct
location of the Enterprise when the star explodes.

Calculate the speed of the matter thrown out from the explosion as
measured by Starfleet officers on board the Enterprise.

Calculate the time interval between the explosion of the star and
the destruction of the planet, as measured by Starfleet officers on
board the Enterprise. (Hint: use your result from (c) to determine
an expression for the distance between events — according to the
Enterprise — in terms of the unknown time between events.)
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20. Are momentum and energy conserved?
A mad scientist at rest in a lab on the earth is colliding particles to-
gether to make more massive particles. She creates head-on collisions of
particles with a mass of 4GeV/c? and speed 0.6¢ to create particles at
rest with a mass of 10 GeV/c2.

In the rest frame of the scientist, the 4 GeV/c? particles have equal and
oppositely directed momenta, and the 10 GeV/c? particle is at rest, so
momentum is conserved.

An observer in a rocket flying over the lab at a speed v = 0.6¢ views this
experiment.

(a) Test whether relativistic momentum is conserved according to the
observer in the rocket. Your test should include detailed numerical
calculations demonstrating the conservation (or non-conservation)
of relativistic momentum.

(b) Test whether relativistic energy is conserved according to the sci-
entist in her lab. Your test should include detailed numerical cal-
culations demonstrating the conservation (or non-conservation) of
relativistic energy.

(¢) Test whether relativistic energy is conserved according to the ob-
server in the rocket. Your test should include detailed numerical
calculations demonstrating the conservation (or non-conservation)
of relativistic energy.

BEFORE AFTER

O u; = 0.6c  uo = 0.6¢ uz =0

O 0

Figure 4.6: Figure for Problem 20.



Chapter 5

Applications of the
Relativistic Conservation
Laws

5.1 Introduction

You should now understand why Einstein’s postulates require new defini-
tions of momentum and energy. The classical momentum is not conserved,
nor in general is the total mass of the particles in an interaction. In place
of these, relativistic momentum and relativistic energy are conserved, and
they are conserved in any inertial frame.

In this chapter, we apply these new, relativistic conservation laws to
analyze collisions and decays of subatomic particles. The key result in these
applications is the ability for matter to be converted into kinetic energy and
vice-versa. In relativistic collisions, the amount of matter that you start
with is not the same as the amount of matter that you finish with! We also
discuss the principles behind nuclear fission and nuclear fusion.

5.2 Changes of Rest Energy

Much of the light you see comes from changes in rest energy of atoms.
Examples are sunlight, light from a candle flame, a lightning flash, light
emitted by a fluorescent lamp, light from the phosphor coating on the screen
of a television set or a video monitor, and laser light. In all these examples,
the basic mechanism is that an atom in an “excited” state releases kinetic
energy in the form of a photon, with the atom going into its ground (lowest
possible) state, or into an excited state of lower energy. We can represent
the emission process by the simple reaction equation

A" A+ (5.1)
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Figure 5.1: An excited atom emits a photon and recoils.

Here A* represents the excited atom, A the atom in its ground or lowest
state, and v (Greek gamma) the photon.

In Fig. 5.1, the excited atom is shown at rest, so all of its energy is rest
energy and it has no momentum. But the photon has energy, and from
the relation F = pc, it also has momentum. And because momentum must
be conserved, the atom recoils. We can write the conservation of energy
equation for the reaction in Eq. (5.1) as follows

Rest Energy of A* = Energy of A + Energy of photon. (5.2)

Because both the kinetic energy of A and the photon energy are positive
numbers, the rest energy (i.e., the mass) of the excited-state atom must
be greater than that of the ground-state atom. Therefore, in the emission
process rest energy, i.e., mass, is converted to kinetic energy.

When light is absorbed by an atom, exactly the opposite effect occurs.
The atom begins in its ground state, absorbs the photon energy and goes
into an excited state. Again, by conservation of energy, the excited atom
must have more rest energy than the ground-state atom.

Another everyday example of changing rest energy occurs in chemical
reactions. For example, the reaction for the oxidation of a carbon atom

C+ 09 — COq (5.3)

is known to release kinetic energy in the form of one or more photons.
Therefore the sum of the masses of C and O2 must be greater than the mass
of the carbon dioxide molecule. The change in rest energy in the case of
chemical reactions is typically on the order of 1eV (or 1.6 x 107 J). Much
larger energies, on the order of 1 MeV, are involved in nuclear reactions. An
example of a nuclear reaction is the decay of a neutron into a proton, an
electron, and an electron antineutrino:

n—p+e + . (5.4)
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Here the excess mass of the neutron over the mass of the proton plus electron
(the electron antineutrino has very small mass) is converted to the kinetic
energy of the three reaction products.

Another important example of changes in mass is the production of new
particles in a high energy particle accelerators. In these accelerators high-
speed particles are shot at target particles and some of the kinetic energy
of the incoming particles is converted to rest energy. In this way hundreds
of new particles, most with lifetimes between 1071° and 10723 s, have been
produced. You’'ll learn more about these new particles next semester in
PHYS 212.

5.3 General Strategy for Applying the Relativistic
Conservation Laws

In a typical problem you are given information about the particles before an
interaction and asked to compute certain properties of the outgoing particles
after the interaction. You do this by writing down equations that express
the fact that the sum of the incoming momenta is equal to the sum of the
outgoing momenta and the sum of the incoming energies is equal to the sum
of the outgoing energies. What quantities should be used in writing these
equations? Here is some time-saving advice.

Always write the conservation of momentum and conservation
of energy equations in terms of momentum and energy or mass
variables, never in terms of velocity or kinetic energy.

This rule keeps the algebra as simple as possible — it gets around having
to solve simultaneous equations with the y/1 — v?/c? terms that can make
the algebra messy. For example, if you are given the velocity of one or more
particles in the problem statement, first calculate the momentum and energy
of each particle from the given velocities.

A second piece of advice:

When working with “eV” units (e.g., MeV for energy, MeV /¢ for
momentum, MeV/c? for mass), don’t ever put any numbers in
for the speed of light c¢. Just leave it as “c.” The units will then
automatically take care of themselves.

For example, if you have an motionless electron, its energy can be ob-
tained from E? = p?c® + m?c*. For a motionless electron p = 0, so
E =mc? =0.511MeV/c? x ¢ = 0.511 MeV. (See section 4.8.)
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Figure 5.2: Emission of a photon by a nucleus as discussed in Example 1.

Example 5.1 Emission of a photon by a nucleus.

An excited atomic nucleus, of mass 5.00 GeV/c? and at rest, as in
Fig. 5.2, decays to its ground state by emitting a photon of energy
2.00 GeV. Calculate the recoil velocity and mass of the ground-state
nucleus.

Solution: First draw a picture, and label each particle with its value
of energy and momentum. Before the decay the excited nucleus has
zero momentum because it is at rest. And from E? = p?c® + m?c?,
with p = 0, we know its energy is the same as its rest energy, namely
5.00 GeV.

After the decay the ground-state nucleus recoils with unknown energy
and momentum, F» and ps. Also, the emitted photon has an energy
of 2.00 GeV, as specified in the problem. And because the photon’s
mass is zero its momentum has the same numerical value as its energy.
Notice that in the diagram there are two unknowns, the energy and
momentum of the recoiling ground-state nucleus. We plan to solve for
these two unknowns with two equations, the energy and momentum
conservation equations.

Looking at the diagram, we write down the energy conservation equa-
tion in terms of the symbols and numerical quantities shown in the
diagram:

5.00 GeV = FE3 4+ 2.00 GeV.

Similarly, we write the momentum conservation equation in terms of
symbols and numerical quantities shown in the diagram:

0 = po + 2.00 GeV/e.

From these conservation-law equations we easily solve for the energy
and momentum of the recoiling nucleus to obtain Fo = 3.00 GeV and
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p2 = —2.00GeV/c. Now that we’ve obtained expressions for the en-

ergy and momentum of the recoiling ground-state nucleus, we can find

its speed using a formula from Problem 4.6 (and from Table 4.1):
pac®  (=2.00GeV/c) x c? 2

u2 = = = —*C’

Ey 3.00 GeV 3

and its mass from

mec? = E2 — pac?

= /(3.00GeV)2 — (2.00 GeV/c)2 x ¢2
V5 GeV,

so the mass is my = V5 GeV/c? ~ 2.24 GeV/c2.

Notice that even though we were asked to find the velocity and mass
of the recoiling nucleus, we didn’t use these variables in our analysis
until the very end, after we solved for its energy and momentum.

5.4 Nuclear masses, fusion and fission

A particularly important application of the material in this chapter is nu-
clear power generation. There are two main approaches: fusion and fission.
Nuclear fusion involves the merging (fusing) of two light nuclei (usually hy-
drogen) to form a more massive nucleus (usually helium), whereas fission?
involves the splitting of a very massive nucleus (e.g., uranium) into two or
more lighter nuclei. For the process to release kinetic energy, conservation
of relativistic energy requires that the end product(s) have a smaller total
mass than the initial nucleus or nuclei.

To develop a quantitative relationship between changes in kinetic energy
and changes in mass, consider a simple fission decay in which particle A with
mass m 4 and kinetic energy K4 decays into a particle B with mass mp and
kinetic energy Kp and a particle C with mass m¢ and kinetic energy K¢:

A —B-+C.

LThe story of how fission was discovered is quite interesting. It starts with Lise Meit-
ner and Otto Hahn, who conducted “transuranium” experiments where they bombarded
massive nuclei with the goal of making more massive nuclei (more massive than uranium).
But the experiments produced puzzling results. Meitner — with her nephew Otto Frisch —
later provided an explanation. Instead of making more massive nuclei, they realized that
the nuclei were breaking up with a resulting loss of mass, and Meitner used Einstein’s the-
ory of relativity to explain the increase in energy observed in the process. Meitner — who
was inexplicably overlooked for the Nobel Prize for the fission discovery — also discovered
a radiation process which was named the Auger effect after a scientist who also discovered
this process, a couple of years after Meitner had discovered it.
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Figure 5.3: Plot of mass per nucleon (proton and neutrons) for the elements versus
the number of nucleons A. (Data from NIST: http://physics.nist.
gov/PhysRefData/Compositions/)

Total relativistic energy is conserved (Epefore = Eafter) giving
Er=Ep+ Ec. (5.5)
This can be written in terms of kinetic energy using Eq. (4.28), giving
mac® + Ka = (mpc® + Kp) + (mcc® + K¢). (5.6)
Rearrangement yields the expression
(Kp + K¢) — Ka = — [(mpc® + m¢) —mac?], (5.7)

or

AKvsystem = _A7nsystemc2 . (58)

This relationship is easily generalized to larger numbers of particles, and it
also holds in fusion reactions.

Figure 5.3 shows a plot of the masses of the elements, divided by the
total number of protons and neutrons (nucleons) in the nucleus of each atom.
This plot is very illuminating when considering fusion and fission processes.
The fusion of two 2H nuclei to form a single *He nucleus results in a lower
overall mass, since the number of nucleons does not change; consequently,
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this process releases kinetic energy. On the other hand, elements with large
atomic number A have a larger mass/nucleon than those with intermediate
values of A; consequently, kinetic energy can also be released by splitting
up one of these heavier atoms (fission).

Of the two processes — fission and fusion — fission is a much easier
process to achieve in the laboratory or in industrial processes. Many large
nuclei are naturally unstable, e.g., 22U can spontaneously decay via the fis-
sion process 239U — 134Xe+1908r+1n. Practically, then, the issue boils down
to setting things up such that the process can be accelerated when desired,
and can be inhibited when unwanted. From that perspective, the concept of
a chain reaction is relevant. The idea of combining multiple nuclear fissions
into chain reactions —which was pioneered by Lise Meitner, Otto Hahn,
Fritz Strassmann, and Enrico Fermi in the 1930s — is straightforward: if
the neutrons that are released in a fission process bombard another nearby
(unstable) nucleus, they can trigger the fission of that nucleus as well. Prac-
tically, all that is needed is a large enough density of the unstable nucleus
(e.g., °U) and a chain reaction will start. This idea was pursued by the
Manhattan Project in the 1940s to develop an atomic bomb, the detonation
of which was achieved by explosively compressing a uranium sample to in-
crease its density above the critical value for a chain reaction. Alternatively,
the strength of the fission chain reaction can be controlled by absorbing
some of the neutrons produced in the fission reaction. Graphite rods (which
absorb neutrons) are commonly used to “moderate” the reaction in this way
to allow the reaction to proceed in a controlled manner in power generators.

Nuclear fission power has a few serious drawbacks: (a) the fuel (uranium,
plutonium, etc.) is expensive and limited in supply. If society were to switch
entirely to uranium-fission-based power generation, it is estimated that the
supply of uranium would last for only 50-100 years. 2 (b) The by-products of
the fission reaction are nuclei which themselves are unstable and radioactive;
consequently, the material poses a health hazard unless properly stored.

Another drawback of nuclear fission reactors — which is diminishing
with improved technology — is the concern that they could “melt down”
and release massive amounts of radiation (this actually happened to the
Chernobyl 4 reactor in the Soviet Union in 1986). This threat has been
lessened recently by the development of much better systems, including a
“melt-proof” system with an expandable core; if the temperature of the core
exceeds a defined value, the core expands, dropping the density of the fissile
material down below its critical value and stopping the chain reaction. (This
works even if all cooling is stopped.) But even this system isn’t perfect, as
there is always the concern that a terrorist attack or gross human error

2Wider application of current technology in waste reprocessing and the use of special-
ized breeder reactors would extend the uranium fuel supply by a factor of more than 10,
though these practices are currently avoided in many countries due to the low cost of
uranium and the associated nuclear proliferation risks.
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could result in the release of disastrous amounts of radioactive waste into
the environment.

In contrast to fission reactors, nuclear fusion reactors use water as their
fuel (actually the 2H isotope of hydrogen, also called deuterium, which is
found in small amounts in water) and produce helium as a by-product, so
waste disposal is less of a problem.? The nuclear energy production is also
much more efficient for this process than for fission, as can be inferred from
the steepness of the curve in Fig. 5.3. It is estimated that there is enough ?H
(deuterium) in ocean water to power the world’s needs for many thousands
of years (if not millions). In fact, nuclear fusion is the power source in stars,
including our own Sun. It can be argued that almost all of the Earth’s
energy sources can be traced back to nuclear fusion.

Nuclear fusion is not without its problems, though. Specifically, it is
very difficult to achieve in a controlled manner. Making a fusion bomb un-
fortunately isn’t that difficult (relatively speaking), as a fission explosion
can be (and has been) used to compress hydrogen together and cause ex-
plosive fusion. But to achieve a controlled fusion reaction is a very difficult
procedure that will require a significant amount of ingenuity over the next
few decades. If physicists and engineers manage to overcome the technical
hurdles, earth-based fusion reactors could prove to be an important source
of abundant and relatively clean power. And in the mean time, we can
continue to make use of the giant fusion reactor in space that beams energy
down to earth.

3Some radioactive tritium (the >H isotope of hydrogen) is released in the process as
well, which can present exposure risks in the short term, if not properly managed. Tritium
is a highly mobile and reactive gas that can involve itself in the place of normal hydrogen
in a variety of biological processes, so it should be carefully managed to avoid exposure,
though with a half-life of only 12 years, tritium does not constitute a long-term waste
problem. Further, the biological half-life of tritium—at roughly 10 days—and its very low
decay energy, make it of minimal concern. The only long-term waste problem would be
the activated material in the reactor containment vessel itself.
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Problems

1.

A nucleus with mass v/5GeV/c? ~ 2.24 GeV/c? in its ground state and
initially at rest absorbs a photon of energy Fj. After absorbing the
photon, the nucleus is raised to an excited state, with mass 5.00 GeV /c?,
and recoils with unknown momentum ps.

(a) Draw a picture of this interaction.

(b) Write down the two conservation laws in terms of E1, p3, and given
numerical values.

(c) Solve for E; and ps.

. Calculate the speed of the recoiling excited-state nucleus in problem 1.

Compare with the case of photon emission, done as example 1 in the
text. Are the recoil velocities the same for emission and absorption?

. A particle of mass m; = 9GeV/c? and energy E; = 15GeV approaches

a stationary particle of mass mg = 5GeV/c?. The particles collide and
form a single particle of mass m3. Determine mg by using the conserva-
tion laws.

. An incident proton, mass m = 938.27 MeV /c?, strikes a target proton at

rest with just enough energy to create an electron-positron pair. (The
two protons are still present after the collision.) A positron is the an-
tiparticle of an electron; both the electron and positron have masses
0.511MeV/c?. Calculate the minimum energy needed by the incident
proton in the frame where the target proton is initially at rest. (Hint:
After the collision, both protons and the electron-positron pair all move
together with the same velocity.)

. A particle of mass 3.0 MeV/c? and momentum 1.0 MeV /c hits and sticks

to a particle of mass 2.0 MeV /c?, initially at rest.

(a) Find the mass of the composite particle and its velocity.

(b) How much kinetic energy is converted to matter?

. A deuteron (mass 1875.61 MeV/c?) absorbs a photon and splits into

a proton (mass 938.27MeV/c?) and a neutron (mass 939.57 MeV/c?).
What is the minimum energy of the photon required to do this?
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7. The easiest and most immediately promising nuclear reaction to be used
for fusion power is the fusion of a deuterium (?H) nucleus, with mass
1875.61 MeV /c?, and a tritium (*H) nucleus, with mass 2808.92 MeV /c2.
The fusion reaction produces a *He nucleus of mass 3727.38 MeV /c?, and
a free neutron of mass 939.57 MeV /c?:

H + $H — 3He + n.

(a) Is rest energy converted to kinetic energy or vice-versa? Support
your answer.

(b) Calculate the amount of energy that is converted.

8. In a fission process, a slow neutron causes a uranium nucleus (mass =
218,943.42MeV/c?) to split into a barium nucleus (mass =
131,261.73MeV/c?) and a krypton nucleus (mass = 85,629.32 MeV/c?),
plus two excess neutrons (actually 3 including the original neutron, but
that is present before the process as well), each of mass 939.57 MeV /c?.
Calculate the energy converted from rest energy to kinetic energy in this
process.

9. A photon of momentum 2.0 MeV/c traveling along the positive z-axis
strikes a particle of mass 4.0 MeV /c?, which is initially at rest. The result
of the collision is simply two photons: photon 7; travels backward, along
the negative z-axis and photon =9 travels forward, along the positive
x-axis.

(a) Draw before and after pictures of the interaction.

(b) Find the energies of 1 and s after the collision.

10. Based on the plot in Fig. 5.3, answer the following questions:

(a) Why is a fusion reaction a more efficient power source (“pound for
pound”) than a fission reaction?

(b) A supermassive star goes supernova after it has run out of hydrogen
to fuse, at which point it starts fusing helium into heavier elements,
then fusing those into heavier elements, etc., until it gets to iron
(Fe). Up until this point, the fusion reactions produce kinetic energy
and heat, maintaining the star. But after the star has fused its
materials into iron, it stops producing kinetic energy, collapses very
suddenly and goes “Blammo!!” (This is a supernova.) What is
so special about iron, and why can’t the star produce additional
kinetic energy after this point?
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11.

12.

A flower absorbs a (higher energy) photon of ultraviolet light and emits
a (lower energy) red photon. Describe what happens to the mass of the
flower first when it absorbs the ultraviolet photon and then later when it
emits the red photon. Would you expect any mass changes during this
process to be noticeable? Explain why or why not.

It’s not just nuclear reactions that involving converting mass-energy to
kinetic energy. Chemical reactions, such as combustion, also do this,
although the effect on the masses is hardly noticeable. For instance,
when a car burns one gallon of gasoline, 132MJ of kinetic energy is
released. Consider the total mass of the reactants (i.e., all the molecules
of the gasoline and oxygen before the reaction) versus the total mass of
all the molecules in the chemical products after the reaction. How much
mass (in kg) is lost in this reaction (i.e., total mass of reactants minus
total mass of products)?
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Chapter 6

Thermal Energy and Solids

6.1 Introduction

In our everyday lives we experience many examples where mechanical en-
ergy is not conserved: brakes slow down a car, a bouncing superball returns
to a lower height than it started from, and blow darts slide to a stop along
the corridors of Bucknell residence halls. Because friction takes mechanical
energy away from an object, historically it was not at all obvious that energy
should be conserved. But some physicists in the 19'" century noticed that
when friction acts to slow an object and take away some mechanical energy,
the object invariably becomes hotter. This suggested that temperature is
connected to some kind of internal energy of the object — let’s call it ther-
mal energy — and that friction has acted to convert some of the object’s
mechanical energy to this thermal energy. Careful experiments by Joule and
others confirmed the hypothesis that total energy is conserved even when
mechanical energy is gained or lost, and now energy conservation is one of
the most fundamental principles in physics.

But what is thermal energy? As we shall see, it is nothing more than the
kinetic and potential energy of the individual molecules that make up the
objects in our everyday world. In this unit we will begin by distinguishing
mechanical energy from thermal energy.

6.2 Thermal Kinetic Energy

First, let’s consider molecular kinetic energy. Consider a set of N molecules,
each with the same mass m, with velocities v, ¥, ..., Un. We will show that
the kinetic energy associated with these moving molecules can be separated
into mechanical kinetic energy and thermal kinetic energy. The first step
is to calculate the motion of what is called the center of mass. At some
particular instant in time, the positions of each particle are given by the
vectors 71, 7o, ..., Tn. The location of the center of mass, denoted by the
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vector T, is the average of these positions
" L. S
Tem = N(r1+r2+-~-+r]v). (6.1)

Taking a time derivative of this equation gives

. dr, 1, -
Ucm:ﬁzﬁ(vl+v2+”'+fu]\f)a (62)

so the center of mass velocity is simply the average velocity (in this simplified
case of equal masses).

For a rigid object, like a solid, the velocity of the center of mass is simply
the velocity of the object. If the center of mass velocity of some object is
zero, then that object, viewed macroscopically, is at rest. A ball sitting on
a table has a stationary center of mass, and therefore no mechanical kinetic
energy. However, the individual molecules of the ball are certainly not at rest
and do have kinetic energy. The motion appears random, with molecules
moving in every direction; some molecules moving faster and some slower.
It is this molecular kinetic energy which we identify as thermal energy.!

The thermal kinetic energy of an object is simply the molecular
kinetic energy when the center of mass is at rest.

What about the case where the center of mass is moving? For example,
if the ball is not sitting on the table but rather flying through the air. It is
still possible to identify the thermal kinetic energy, because there is always
some co-moving reference frame in which the ball is at rest. The molecular
motion as viewed in that frame will again be the thermal kinetic energy.

But nevertheless we may ask if it is possible to identify the thermal
kinetic energy in a frame where the ball is moving. And indeed, it is possible.
The velocity ¥; of the ith molecule can be written as a sum of the center of
mass velocity ¥.;, and the velocity of the particle relative to the center of
mass U rei. That is, U; = Uem + Ui rei. Then the total kinetic energy is the
sum over all particles:

1 N N - -
Ktotal =35 5 m(vcm + 'Ui,rel) : (vcm + Ui,rel)
7
1 2 — — 1 2
=1 E mus, + E M Vern - Ui rel + 5 E M V] el (6.3)

Note that ¥, is the same for all particles, so it can be brought outside the
sum over particles. Then the first term becomes

1 2 _ 1,2 _ 1ag.2
5 E MV, = 5V g m = s Muvg,, (6.4)
i i

'For simplicity, we are excluding the possibility of rotations.
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where M is the total mass of all the particles. This is exactly the mechanical
kinetic energy we have already encountered. The second term can be written

as
Mo+ (D et (6.5)

Since ;¢ is the particle velocity relative to the center of mass frame, the
sum ) ¥; re; = 0, and this term vanishes. The last term in Eq. (6.3) is just
the total kinetic energy measured in a frame moving with the center of mass,
which is the thermal kinetic energy. Putting this all together,

K= Kmech + Ktherma (66)

thus the kinetic energy divides cleanly into mechanical and thermal kinetic
energy.

6.3 Thermal Potential Energy

Thermal energy is not just kinetic, but also involves potential energy. Mole-
cules exert forces on each other, pushing and pulling.? These forces are
conservative, so there is a potential energy associated with each pair of
molecules. To understand this potential energy, we must first consider the
force between an isolated pair of molecules. There are three distinct regimes,
depending on how far apart the two molecules are.

e When the molecules are closer than a molecular diameter, they exert
a strong repulsive force on each other.

e When the molecules are within a few molecular diameters, they exert
attractive forces on each other.

e When the molecules are more than a few molecular diameters away
from each other, the force becomes negligibly small.

This behavior is captured by what is called the pair potential, shown in
Fig. 6.1, which is the potential energy Upair(r) due to a pair of molecules
separated by a distance r. The diagram illustrates the three regions. Notice
that at a separation r = d, where d is the molecular diameter, there is an
equilibrium point dividing the regions of attractive and repulsive forces.

As we shall see in the next two chapters, this pair potential explains the
existence of solid, liquid, and gas phases, and many details of the phases and
of the transitions between the phases. It is one of the remarkable triumphs
of the atomic theory of matter that so much behavior can be explained by
such a simple model of the forces between atoms!

2The origin of these forces is the electric force interactions between the charges of the
atoms combined with quantum mechanics, which governs the location of the charges. Both
of these topics will be covered in PHYS 212.



124 CHAPTER 6. THERMAL ENERGY AND SOLIDS
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Figure 6.1: The pair potential energy Upair as a function of r, the separation
between the pair of molecules. The dashed lines separate the regions
of repulsive force, attractive force, and negligible force. At separation
r = d the pair is in equilibrium, which defines the molecular diameter.

In principle, the system potential energy for a system of N molecules
contains the pair potential energy for every single pairing of the molecules.
This is a very large number of pairs! Fortunately, only those molecules which
are immediate neighbors are close enough to have an appreciable force and
potential energy, so we only need to consider the potential energy due to
neighboring molecules.

What about other sources of potential energy besides the intermolecular
forces? For example, gravitational potential energy. When a ball is thrown
upwards, the gravitational potential energy of each molecule increases. But
the height of each molecule is increased by the same amount that the height
of the center of mass is increased. Therefore this change in potential energy
has the form

AUvgrav = MobjectgAycma (67>

where Mpject is again the total mass of the object. This is the familiar
mechanical potential energy. Therefore, gravitational potential energy is
always part of the mechanical energy, whereas the molecular interaction
energy makes up the thermal potential energy.

In summary, here is the big picture for thermal energy:

e For both potential energy and kinetic energy, it is the ‘organized’ mo-
tion that makes up the mechanical energy, such as all molecules in-
creasing their height together or all molecules having a net alignment
of their velocities.
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e The remaining disorganized motion, such as the wiggling of the mole-
cules and their individual pushes and pulls on each other, corresponds
to the thermal energy.

e Friction is an agent that takes organized motion and disorganizes it,
taking away mechanical energy and increasing thermal energy.

e Going the other way — taking away thermal energy and increasing
mechanical energy — is more difficult, since molecules are not likely
to spontaneously start moving together. Nevertheless, we can capture
some amount of thermal energy and convert it to mechanical energy
with a device called a heat engine, which is the topic of Supplementary
Reading Chapter 10.

6.4 The Solid State

Molecules interacting via the pair potential can be solids, liquids, or gases.
The remainder of this chapter is concerned with the thermal energy of the
solid state, while liquid and gas states will be presented in Chapter 7.
Most inorganic solids are crystalline, which means the molecules are ar-
ranged in a symmetric way, such as a cubic lattice. (Organic solids instead
are constructed from long carbon chains.) In this lattice, each pair of neigh-
boring molecules is separated by roughly the equilibrium distance, that is,
the minimum of the pair potential well, and only makes small excursions
from this location. As illustrated in Fig. 6.2, the pair potential in this re-
gion is identical to a parabolic potential. We have previously encountered
a parabolic potential energy curve as the potential energy for a mass on a
spring. Evidently, as long as the molecules in a solid are not deviating sig-
nificantly from their equilibrium position, we may regard their interactions
with their nearest neighbors as equivalent to being attached by a spring.

CHECKPOINT: What is the main difference between the pair po-
tential and the spring potential? What would I need to do to
a pair of molecules to see this difference? (Push together? Pull
apart? How far?)

This leads to what we call the ideal solid: the molecules are balls of mass
m, they are connected by springs of spring constant kg,, and the springs
have an equilibrium length of d. This model is illustrated in Fig. 6.3. We
may think of the spring constant as determining the bond strength and the
equilibrium length d as the bond length. These three parameters (m, d, and
ksp) define the model, and we shall see that for many solids determining
these parameters describes much of the behavior of the solid.
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; Uspring

Figure 6.2: The solid curve is the pair potential Upai, as a function of separation 7.
The dashed line is the spring potential Ugpring With the spring constant
ksp chosen to match Upair near the minimum. The inset shows the
match.

One may imagine packing the molecules together in different ways. The
arrangement illustrated in Fig. 6.3, is called a simple cubic lattice. In fact,
most solids are packed differently, for example, in the way a grocer would
stack oranges (which is called a face-centered cubic lattice). Fortunately,
this distinction has little impact on the quantities we will study, so we will
stick with the simple cubic lattice.

Given the properties of some solid, how are the ideal solid parameters
determined? Let’s derive these for a specific case, namely copper. Molecular
properties, such as mass, are usually not specified for a single molecule, but

N,

0000, (0000 0000
000000000 !
R W
00000 Q0000

Gy,
00000 000!

Figure 6.3: The ball-spring model of a solid.
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d

dl@@@ T
CICI]

Figure 6.4: For the ideal solid with a separation d between the balls, the volume
per ball is given by a cube of side d (shown here in two-dimensions).

rather for a mole. One mole equals Avogadro’s number
Ny = 6.02 x 10% (6.8)

of molecules. Avogadro’s number is chosen so that roughly one mole of
protons has a mass of one gram. The precise definition is that one mole
of carbon atoms has a mass of 12g. The mass of one mole of a material
would logically be called the molar mass, but instead it is usually called the
molecular weight.

One mole of copper has mass 64 g, so we may conclude that a single
molecule of copper (the ball in our model) has mass

64g

—22

mcu =

This is the first of our three parameters.
Next, we can get the equilibrium spacing d between the molecules by
knowing the density of copper, which is 8.94g/cm?. In Fig. 6.4 shows that
each molecule of copper occupies its own cubical region with volume d3. We

can relate the density p of the solid to the mass per volume of a unit cell.
That is,

1/3
mass m m
P~ Solume ~ &3 ~ d= <p> ’ (6.10)

For copper this gives

1/3 —22 .\ 1/3
, 1.06 x 1 ~
doy = (mc ) = <06X03g> =228 x 10 8cm,  (6.11)
PCu 8.94g/cm

or equivalently, 2.28 x 10~ m. And so we have the second parameter.
The final step is to determine the spring constant. Fortunately, it is not

necessary to try pulling on a single molecule and measuring the force that

it pulls back with. Rather, a macroscopic chunk of material can be fixed at

31t’s not our fault.
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one end and pulled on the other, and by measuring how much the object
stretches, the bond spring constant can be measured.

Imagine a piece of copper wire with cross-sectional area A and length L.
The applied force required to stretch the wire by an amount AL is given by

the following relation:

YA
Fapp == TAL (612)

This relation indicates that the amount of stretch AL is proportional to the
amount of force applied; doubling the force will double the amount of stretch
from the equilibrium length. A larger cross-sectional area A makes the wire
harder to stretch, which accounts for the factor of A in the numerator. The
longer the wire, the easier it is to stretch, accounting for the factor of L in
the denominator. The final parameter Y is called Young’s modulus, and is
a property of the material but not dependent on the geometry of the wire.
For example, Young’s modulus for copper is Yo, ~ 130 x 109 N/m?.

Example 6.1 Stretching an Extension Cord

Consider 16 gauge copper wire, commonly used in power cables, which
has a cross-sectional area of 1.3 x 1079 m?. How much force is required
to stretch a 2-meter length of wire a distance of 1 centimeter?

Solution: According to Eq. (6.12), the force is given by

YA 130 x 109 N/m?)(1.3 x 10~ m?)

2m

— 845 N. (6.13)

AL:(

Fapp (0.01 m)

Now we need to calculate Young’s modulus for the ideal solid. Consider
a rectangular solid of N, x Ny, x N, molecules. The object is stretched in the
z-direction by an applied force F', with a resulting stretch AL. The stretch
is shared equally among each of the IV, springs aligned in the z-direction, so
each spring is stretched an amount AL/N,. The plane of molecules where
the force is applied consists of NN, molecules, each connected to a spring
pulling with force ks, AL/N,. This spring force is balancing the applied
force, so we can conclude that

(6.14)

ksp AL
Fopp = Nz Ny ( il ) .

N
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If we multiply top and bottom by d? we can identify the cross-sectional area
A = (N,d)(Nyd), and the length L = N.d:

d?>N, N, ks ksp A
—— Y PAL="FRE_AL (6.15)

F__ =
app d2N, d L

from which we conclude that Young’s modulus for the ideal solid is

ks
Yy = =2, 6.16

y (6.16)
This can be used to find the spring constant, ks, = Y'd. For example, for

copper
ksp = (130 x 109 N/m?)(2.28 x 107'%m) = 29.6 N/m. (6.17)

In this way, we can find all three ideal solid parameters from knowing the
molecular weight, the density, and Young’s modulus.

6.5 Speed of Sound

How well does this ball-spring picture of a solid work? One way to test the
model is to study the speed of sound in a solid. Sound is a compression
wave, much like a compression pulse sent down a stretched slinky. If an
ideal solid is suddenly struck at one end, how fast does the compression
wave travel toward the other end? We can almost guess the answer. The
wave “hops” from one molecule to its neighbor and each hop moves the wave
a distance d. Since the molecules are harmonic oscillators, the time it takes
for a hop must be related to the period of oscillation 7', so we could guess
Vsound = d/T. Tt is not difficult to do the full calculation for the ideal solid*
and find that the answer differs from this guess by a factor of 2

2md @

Usound = T =dw=d (6.18)

m

Thus, the speed of sound in the ideal solid depends on all three parameters.
The values we obtained for copper (be careful to use SI units here!) give

29.6 N/m
1.06 x 10~ kg

Vsound = 2.28 x 10710 m\/ = 3810m/s (6.19)

which is exactly the measured value for the speed of sound in copper. Evi-
dently the ideal solid model works quite well. You will make more compar-
isons in the homework.

“This is done in PHYS 221/222.
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Celsius Kelvin
7 N\
—— 100°}—--- water boils --- —373 K ——
AT = 100° AT =100 K
- 0° - - - water freezes - - 273 K —YX—

273°Q— - absolute zero - _QO K

Figure 6.5: The size of the degree is the same for Celsius and Kelvin temperature
scales. They differ by a shift: Tx = T + 273

6.6 Temperature

We began the chapter mentioning that when mechanical energy gets con-
verted to thermal energy, the temperature increases. But what is tempera-
ture? Everyone has an intuitive feel for it: we know that a high temperature
corresponds to something that is “hot” and a low temperature corresponds
to something that is “cold.” We also know from experience that “heat” —
which we will define shortly — flows from hot (high temperature) to cold
(low temperature) objects.

It is common in many introductory text books to define temperature as
a measure of the average thermal kinetic energy Kiperm/N of a material.’
This definition of temperature is not valid for all situations (we will provide
a more rigorous definition of temperature in Chapter 9); however, there
are many situations that can benefit from simple view of temperature as a
measure of thermal kinetic energy.

We must talk about temperature units. The Celsius temperature scale
is defined so that water freezes at a temperature of 0° C and water boils
at 100° C. Considering temperature as a measure of kinetic energy, we can
define absolute zero as the temperature where all molecular motion stops.
This occurs at —273.15° C in the Celsius scale.

A important variation on the Celsius temperature scale is called the
Kelvin scale, illustrated in Fig. 6.5. The “size” of the degree is the same for
Kelvin and Celsius, that is, a change in temperature of 1K is the same as

SHistorically, this approach was used successfully in the 18" and 19*" centuries to
develop the first successful quantitative theories of thermodynamics, referred to as the
kinetic theory of thermodynamics.
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a change in temperature of 1° C. The boiling temperature of water is still
100K higher than the freezing temperature. The difference in the scales is
the location of zero: in the Kelvin scale, absolute zero corresponds to 0K,
water freezes at 273 K and boils at 373 K. The Kelvin temperature scale is
the one best suited for most thermodynamics problems.

6.7 Molar Specific Heat

Now we are prepared to address the question, “If a certain amount of thermal
energy is added to a system, how much will the temperature increase?”
This is a question with far-reaching applications. For instance, how much
energy needs to be added to a swimming pool to heat it up to a comfortable
temperature? How much cooling water or antifreeze is needed to keep a
car from overheating? How much will the temperature of a bucket of water
increase if a hot ingot of lead is tossed into it?

We mentioned in the previous section that temperature is often asso-
ciated with the thermal energy of a system, i.e., increases in temperature
are associated with increases in the thermal energy. But how much does
the temperature increase with a certain amount of energy is added to a
material? For that, we define the molar specific heat C"

AE‘therm

¢= nAT

(6.20)
In words, the specific heat is defined as the energy required to raise the tem-
perature of one mole of a material by a temperature 1 K. So, a material with
a large specific heat requires a lot of heat to increase its temperature signif-
icantly, whereas a material with a small specific heat requires less energy to
raise its temperature by the same amount.

Turning Eq. (6.20) around, the energy required to raise the temperature
of a material is given by

AEerm = nCAT. (6.21)

Measurements have been made of the molar specific heat for a wide variety
of materials. A few of these values are listed in Table 6.1 for some common
metals.

Note that the relation between the thermal energy and the temperature
depends on the amount of material via the number of moles n. Having more
stuff will require more thermal energy to get the same temperature change.
The molar specific heat C', however, is defined such that it does not depend
on the amount of material.
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Example 6.2 Temperature increases

How much thermal energy must be added to 5.0 kg of lead to increase
its temperature from 25° C to 40° C?

Solution: First, it is convenient to determine how many moles of lead
we have here. From Table 6.1, we see that the molar mass of lead is
207 g/mol, so the number of moles is given by

1000g 1mol

— 24.2mol
ke 207g o

n=>5.0kg-

From Table 6.1, we see that the molar specific heat of lead is 26.6 miol - K.
Using Eq. (6.21), we find

AEerm = nCAT = 24.2mol - 26.6 ﬁ 15K = 9640 J.
Note that the conversion between Celsius and Kelvin is trivial; a tem-
perature difference of 15° C is the same as a temperature difference of
15 K.

Looking at Table 6.1, it is apparent that the molar specific heat for metals
is fairly consistent — around 25J/mol-K — for several common metals. A
pattern like this indicates that there might be a simple, common explanation.
That explanation is provided by the ideal solid model and what is known as
the equipartition theorem.

6.8 The Equipartition Theorem

We now discuss a remarkable relationship between temperature and thermal
energy, referred to as the equipartition theorem. The basic idea is that in
thermodynamic systems, thermal energy is equally (“equi”) divided (“parti-
tion”) between certain types of molecular energy, both kinetic and potential.
At first glance, you might think that this would mean that half of the en-
ergy is kinetic and half is potential (and sometimes this is true), but it is
not quite that simple. For one, only those energy terms which are quadratic
in a dynamical variable (such as %mvg) get the equal shares. For any terms
more complicated than that, like the pair potential, we cannot so easily say
how the energy is divided. Also, the number of these egalitarian quadratic



6.9. IDEAL SOLID SPECIFIC HEAT 133

energy terms, often called degrees of freedom, depends on details such as
whether there is rotational as well as translational kinetic energy.%
Maybe it will help to see the theorem:

EQUIPARTITION THEOREM:

Any term in the energy of a molecule that is quadratic, such as

1, .2 1 2 17,2 1
5Muy or Fkspx® or 5lw?, averages to 5kgT.

This amazing result says that when some 10?3 particles push and pull
and collide with each other, all the messy forces involved will result in every
quadratic energy term averaging to the same value. It doesn’t matter if the
molecule is heavier or lighter, or what the spring constant is. It also doesn’t
matter whether we are talking about potential energy or translational kinetic
energy or rotational kinetic energy. As long as the energy is quadratic
in the dynamical variable, the thermal energy will depend only on 7" and
Boltzmann’s constant,

kp =138 x 1072 J/K, (6.22)

which is another constant of nature. Notice how the units work out: kgT is
an energy.

In the next sections, we’ll use the equipartition theorem to analyze ther-
mal energy of an ideal solid.

6.9 Ideal Solid Specific Heat

To determine the molar specific heat of an ideal solid, let us make the
approximation that the neighbors of a particular molecule remain fixed.
This turns out to be a reasonable approximation for most solids. Then the
energy describing that particular molecule is

Emolecule = 3mv2 + 3mu} + 3mo? + Shapa® + hpy® + Shp2®. (6.23)

There are six terms contributing to the energy, all of which are quadratic.
Each term is fluctuating up and down as the molecule interacts with its
neighbors. The equipartition theorem tell us, then, that the average energy
of this ball over time will be

(Emolecule> =6 (%kBT) = 3kBT (624)
Now consider an N molecule ideal solid. The number of moles is given by

n = N/N4, and the thermal energy will be

N
Etherm - N(3kBT) - N

—(3kpNa)T = n3RT, (ideal solid) (6.25)
A

SFor a solid the molecules essentially do not rotate, but rotational kinetic energy can
have a significant effect on the thermal energy of a liquid or gas.
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Material M (g/mol) p (g/cm?®) Y (GN/m?) C (J/molK) v, (m/s)

Aluminum 27.0 2.70 70 24.2 5000
Iron 55.8 7.87 211 25.1 5120
Copper 63.5 8.96 130 24.4 3810
Gold 197 19.3 78 25.4 2030
Lead 207 11.3 16 26.6 1190
ideal solid mN g m/d3 ksp/d 3R=249  d\/ksp/m

Table 6.1: Material properties for a few selected substances.

where R = Nakp = 8.31J/mol-K is called the gas constant, although it has
nothing in particular to do with gases.”
Comparing Egs. (6.25) and (6.21), the molar specific heat of the ideal
solid is
C =3R =24.9J/mol-K (ideal solid) (6.26)

regardless of the material. This relation is known as the Dulong-Petit law.
The molar specific heats of most solids agree with the Dulong-Petit result
to within a few percent accuracy. For example, the molar specific heat
of copper is Ccy = 24.4J/mol-K, and comparable values for a variety of
other solids are given in Table 6.1. This provides more evidence that the
ball-spring model of the ideal solid is reasonable.

Finally, note that the specific heat is only defined in terms of AFiperm
and AT it relates changes in the temperature to changes in thermal energy.
However, if we assume that the specific heat is independent of temperature,
which is a reasonable approximation down to some low temperature, then
we can also estimate

Eiverm = nCT = n3RT. (ideal solid) (6.27)

6.10 Heat and the First Law of Thermodynamics

There are many ways to add thermal energy to an object or to remove it from
the object. We have already discussed how friction can increase the thermal
energy of a blow dart as it slides across the floor. Another way to change the
thermal energy is to bring the object into thermal contact with something
hotter or colder. For a pair of solid objects, thermal contact occurs when
they are physically in contact. Then the molecules at the boundary exert
forces on each other and energy is transferred from the object with the higher
temperature to the object with the lower temperature. As we have already
discussed, temperature directs the flow of thermal energy, determining which
objects will spontaneously give off energy and which objects will receive it.

"This isn’t our fault either.
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The energy transferred spontaneously by molecular motion is given the
name heat. Similar to work, heat is an energy transfer and not an energy.
Think of thermal energy as a bank balance and heat and work as deposits
and withdrawals. The distinction between heat and work is the mechanism
for the energy transfer.

Heat is the thermal energy transferred spontaneously due to a
temperature difference.

All other forms of energy transfer into a system are lumped together as
thermodynamic “work.” For example, the term work can refer to energy
transfer due to external forces that act on system (but do not change the
motion of the center of mass of the system)®, but it also encompasses energy
transfers due to other things, such as the warming of a piece of frozen broccoli
in a microwave oven. To distinguish the two forms of energy transfer, it is
common to use the symbol ) for heat, and W for work.

Now we can state the first law of thermodynamics, which is simply a
statement of energy conservation: the change in thermal energy is equal to
how much work is done on the system plus how much heat flows into the
system. Note that @, like W, can be positive or negative, depending on
whether heat is flowing in or out. The convention used here is to define the
heat @) as being positive if heat is flowing into the material (and negative
if heat is flowing out), and to define the work W as the work done on the
system. It is convenient to write the first law with these conventions stated
explicitly:

AFEiherm = Qin + Won  (1st Law of Thermodynamics). (6.28)

From our perspective today, with energy conservation a fundamental prin-
ciple, the 1st law may seem to be pretty obvious. But historically it was
a very significant discovery, showing that indeed heat was just an energy
transfer, rather than some new substance.? And the importance of the first
law cannot be overstated — this seemingly simple result forms the foundation
of much of what we will be doing during the next couple of weeks.

It is worth appreciating what is not heat. Rubbing your hands together
when they are cold certainly does increase their thermal energy, but not due

8In Unit 1 in this course we discussed the work done on a single particle, and the
resulting change in the kinetic energy of the particle. In thermodynamics we are interested
in composite systems, such as gases liquids, and solids. In composite systems, work can
result in changes in thermal energy as well as kinetic energy. In the thermodynamic
systems we study, there will be no changes in the bulk kinetic energy Kmech-

9Early theories of thermodynamics proposed — incorrectly — that heat was some sort of
fluid (called caloric) that flows between hot and cold materials. We now know, of course,
that heat is simply the “flow” of energy.
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to heat. There is not a higher temperature object making energy flow into
your hands spontaneously, so there is no heat flow. Rather, you are doing
work with your muscles, and the friction force between your hands converts
the mechanical energy of your moving hands into thermal energy.

Example 6.3 First law

You hold a 35mol iron anvil in place on a moving conveyor belt so
that the belt slides under the stationary anvil. The belt does 12,000 J
of work on the anvil, and and it gets warmer. During this process, the
anvil loses 7,000 J to the cooler surrounding air and to the belt. If the
anvil had an initial temperature of 22.0° C, what is its temperature at
the end of this process?

Solution: First, we can use the first law to determine the change
in the anvil’s thermal energy. Conceptually, 12,000 J is added in the
form of work and 7,000J is removed in the form of a heat flow. In
terms of Eq. (6.28), Wy, = 12000 J and @i, = —7000J (negative since
heat is flowing out of the anvil). So,

AFEherm = Qin + Won = —7000J + 12000 J = 5000 J.

We can now use Eq. (6.21) and the molar specific heat of iron (see
Table 6.1 to find the temperature change of the iron anvil:

AEtherm == nC’AT

Solving for the rise in temperature gives

AE‘cherm
AT —
nC
B 5000 J
o J
= 57K

The final temperature is therefore 22.0°C + 5.7° C = 27.7° C.

Note that we could get a very good approximation of the result here
by using the ideal solid approximation for the molar specific heat.

When a pair of objects is in thermal contact but is otherwise thermally
isolated, we can say that AEinem is equal and opposite for the two objects,
since the thermal energy lost by the hotter object is gained by the colder
object. This brings the objects closer together in temperature, until finally
they have the same temperature and no more heat flows. This situation is
called thermal equilibrium.
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Example 6.4 Hot Meets Cold

One mole of an ideal solid at temperature 70° C is brought into thermal
contact with two moles of an ideal solid at temperature 10° C. How
much heat will flow out of the hotter object before thermal equilibrium
is reached?

Solution: We will need to determine the final equilibrium tempera-
ture, Tr. This is done by balancing the heat flows in and out:

AFEtherm,1 = —AFtherm2 = mC1 (T —T1;) = —noCo (T — 1)
—— ————
ATl AT2
(6.29)
where T7; and T5; are the initial temperatures of objects 1 and 2.
Putting in values:

(1mol)(3R)(Ty — 70° C) = —(2mol)(3R)(Tf —10°C)  (6.30)

Note that we have used Celsius temperature. This is because AT is
the same whether measured in Kelvin or Celsius (see Fig. 6.5). Now
we solve:

Ty —70 = —2(Ty —10) = 3Ty =70+ 20 (6.31)
SO 90
Ty =5 =30°C. (6.32)

To complete the calculation, we go back to the change in thermal
energy, Eq. (6.29),

AFherm1 = (1mol)(24.9J/mol-K)(30° C — 70° C) = —996 J. (6.33)

So 996 J of heat flowed out of object 1 and into object 2.
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Problems

1. To understand better how the ideal solid thermal energy is derived, con-
sider the following scenario. A mad scientist creates a new material,
flattium, in which the molecules can only move in the z-y plane, while
their z coordinates remain fixed.!1® Consider how Eq. (6.23) would be
changed, and then use the equipartition theorem to derive an expression
for the thermal energy of flattium.

2. Here is some practice with the ideal solid model.
(a) Using the data in Table 6.1, determine the ideal solid parameters,
m, d, and kgp, for iron.

(b) Use these values to estimate the speed of sound in iron. Compare
your answer with the measured value.

3. Determine the thermal energy of one mole of a solid at a temperature of
100° C. You can use the ideal solid approximation for the molar specific
heat.

4. Calculate the thermal energy required to raise the temperature of iron
by 25K for the amounts given below.
(a) One mole of iron.
(b) One gram of iron.

(¢) One cubic centimeter of iron.

5. A two-mole ideal solid at temperature 40° C is brought into thermal
contact with a one-mole ideal solid at temperature 10° C. Energy flows
from the hotter solid to the colder solid until they reach the same final
temperature.

(a) Calculate the final temperature.

(b) Calculate the amount of thermal energy transferred in this process.

6. Using your results from Problem 2, calculate the typical period of oscil-
lation for an iron molecule at 50° C.

10 Actually, this isn’t really the stuff of mad scientists anymore. Recently, con-
densed matter physicists have discovered new materials — graphene and “Transition
metal dichalcogenide” (TMDC) monolayers — that can be approximated very well as two-
dimensional solids, like this hypothetical flattium.
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7. A 20 kg brick of lead is dropped from a height of 5.0 m above the sidewalk.

10.

11.

12.

13.

14.

It falls to the ground where it comes to rest. Assume that 60% of the
mechanical energy of the brick is converted to thermal energy of the brick
(the remaining energy went into thermal energy of the sidewalk and a
big crack). Determine the temperature increase of the brick. Hint: you
will need to calculate how many moles of lead the brick contains.

. For silver, the ideal solid parameters are m = 1.79 x 10~?°kg, d =

2.58 x 10719 m, and ks, = 21.4N/m. Based on this information, calculate
the density and Young’s modulus for silver.

. In the following list of processes, the thermal energy of an object is

increasing (and so the temperature is increasing as well). For which
processes is this increase due to heat flow?

a drill bit which has been used to bore a hole

(a)

(b) an ice cube placed in a glass of water

(c) a cup of coffee warming in a microwave
)

(d) the filament in a light bulb in a lamp that is plugged in and turned
on

(e) cookies placed into an oven to bake

Consider three bricks, all with mass 10 kg and at room temperature. The
first brick is made of aluminum, the second brick copper, and the third
brick lead. Which will have the largest thermal energy? Rank from from
highest to lowest.

(a) Using the data in Table 6.1, determine the ideal solid parameters,
m, d, and kgp, for aluminum.

(b) Use these values to estimate the speed of sound in aluminum. Com-
pare your answer with the measured value.

For an ideal solid at temperature T', determine the ratio of thermal ki-
netic energy to thermal potential energy. Use the equipartition theorem
to justify your answer.

Specific heats are often given by the amount of thermal energy required
to raise the temperature of one kilogram of material by a degree, rather
than ome mole of material. The per-kilogram specific heat c¢ satisfies
AFEherm = Mobjc AT, where mgp; is the mass of some object. Calculate
the per-kilogram specific heat of iron.

Ideal solid A containing one-mole at some initial temperature T4 is
brought into contact with ideal solid B containing three moles at tem-
perature 20° C. The system equilibrates at a temperature of 75° C.
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(a) Calculate the initial temperature of the solid A.

(b) Calculate the amount of thermal energy transferred.

15. Thermal energies are large! Calculate (roughly) the thermal energy of
an 8 kg brick of lead at room temperature, say 22° C. Compare this to
the gravitational potential energy of lifting this brick a height of 2 m.

16. In Section 6.4, an equation was derived to determine the spring constant
ksp for the ball-spring model from the value of the Young’s modulus for
a material: kg, = Yd.

(a) Show that this equation gives the proper units for the spring con-
stant, given the units for Y and d.

(b) Write a sentence explaining why it makes sense that a material with
a large Young’s modulus is associated with a large spring constant
ksp for interactions between adjacent atoms.

17. In Section 6.5, an equation was derived to determine the sound speed:

ks
P
VUsound = d .

m
(a) Show that this equation gives the proper units for the speed of
sound, given the units for d, ks, and m.

(b) Write a sentence explaining why it makes sense that a material with
a large kgp is associated with a large speed of sound.

(c) Write a sentence explaining why it makes sense that the speed of
sound is smaller for a material whose atoms have a larger molar
mass.

18. You do 275J of work on a system, and its thermal energy increases by
530 J. Calculate the heat that flows into or out of the system, and specify
which direction the heat flows (i.e., in or out).

19. You are polishing a 5.0 g gold wedding ring. After doing this for a minute,
you find that the ring is hot, having warmed up 20° C. Assuming that
the ring loses 210J to the air while you are polishing it, calculate the
work that you did on the ring while polishing it.



Chapter 7

Liquids, Gases, and Phase
Transitions

In this chapter we study the liquid and gas states of matter, as well as the
phase transitions that occur when going from solid to liquid or from liquid
gas. As before with the solid state, our tools for understanding these states
will be the molecular pair potential and the equipartition theorem.

7.1 Phases of Matter

Since the dawn of human existence, people have noticed that matter could
be solid, liquid, or gas. What cavewoman Thag and her contemporaries
did not realize is that these quite different phases are made up of the same
stuff: molecules that are pushing and pulling on each other, sometimes in a
solid phase, sometimes a liquid and sometimes a gas. She was not the only
one who didn’t understand this. Plato didn’t know about molecules. Nor
did Dante, or even Newton. Only after the seminal work of Boltzmann and
Einstein around the turn of the 20" century did our process of scientific
discovery lead us to understand the molecular form of matter.

This discovery is one of the crowning achievements of our species, and is
also very practical, having provided the basis for most of our modern tech-
nology. The great 20" century physicist Richard Feynman® once remarked

“If, in some cataclysm, all scientific knowledge were to be de-
stroyed, and only one sentence passed on to the next generation
of creatures, what statement would contain the most information
in the fewest words? I believe it is the atomic hypothesis ... that
all things are made of atoms — little particles that move around
in perpetual motion, attracting each other when they are a lit-
tle distance apart, but repelling upon being squeezed into one

"You’re going to be hearing more about him in PHYS 212.

141
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Figure 7.1: The molecular picture of the phases of matter.

another. In that one sentence you will see an enormous amount
of information about the world, if just a little imagination and
thinking are applied.”

Let us now follow Feynman’s suggestion and apply a little imagination and
thinking.

We have been discussing the solid phase of matter, where the particles
are arranged in a regular lattice pattern, and the forces between the particles
can be well-modeled as springs attached between neighbors. But we know
from everyday experience that a solid can be melted when heated enough.
Consider a lattice of vibrating molecules. Once the molecular excursions
become large enough, the molecules start slipping past one another. As a
result, the regular arrangement of the molecules in the lattice breaks down
and the molecules are now disordered. They are still very closely packed and
the density is comparable to the solid state, but the object has no rigidity.
This is a liquid.

For most substances, there exists a boiling point separating a liquid
phase from a gas phase. The picture you should have for the gas state is
molecules moving about freely, far from their neighbors, and moving in a
straight line until they collide with another molecule or with the walls of
the container. Like a liquid, the gas phase is disordered. But the density
of gases is much lower than liquids. Another difference between liquids and
gases that we can understand immediately from the molecular viewpoint is
their compressibility. Because the gas is dilute, we can compress a gas if we
push the walls of the container inward. The molecules end up a bit closer
together and bounce around a little faster, but otherwise they don’t object.
Liquids are essentially incompressible: you can’t squeeze water to fit into a
smaller volume. The liquid molecules are already packed together, albeit in
a messy way, and any further squeezing is resisted by the repulsive forces of
the pair potential.

Our basic understanding of the thermal energy of matter, developed in
sections 6.2 and 6.3 for solids applies for liquids and gases as well: in partic-
ular, thermal kinetic energy is associated with motion of the molecules. And
the potential energy associated with the forces between the molecules —i.e.,
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the pair potential — provides the thermal potential energy. However, there
are significant differences in the thermal potential energy for the different
phases:

e in the solid phase the molecules are very near their equilibrium sepa-
ration, allowing us to approximate their forces with springs,

e in the liquid phase, however, the potential energy is complicated, since
the molecules are pushed closer together and pulled farther apart as
the molecules squeeze by each other, making the spring approximation
invalid, and

e in the gas phase, the molecules are so far apart that, except for very
brief collisions, there the potential energy is negligible.

In contrast to these differences, the thermal kinetic energy is identical
in form in all three phases. This allows us to develop the notion of thermal
speed.

7.2 Thermal Speed

For all phases of matter, the translational kinetic energy of a single molecule
is

Kirans = 3mv2 + %mvi + imo?. (7.1)
We can take advantage of this to determine how fast the molecules are
moving at some given temperature 7. Via the equipartition theorem, we

can say that the average translational kinetic energy is
(Kirans) = {3mv2) + <%mv§> + (3ma?) = 2kpT, (single molecule) (7.2)

since there are three quadratic terms in the energy. Recalling that v? =
v2 + ”5 + v2, we can write

3
§kBT = (Amv?) = Im@?) = (v?) =3kgT/m. (7.3)
Now we define the thermal speed, which indicates the typical speed of the

molecules, as?

3kpT 3RT
Vtherm = V/ (V?) = \/ BY _ 0 (7.4)

m

where m is the molecular mass and M is the molar mass.> The second equal-
ity above comes from multiplying numerator and denominator by N4 and

2Why didn’t we simply define viherm as the average velocity (#)? Because the average
velocity is zero, which tells us nothing about the typical magnitude of the velocity.

3Ak.a. what is often horribly called the “molecular weight” (horrible because its a
mass, not a weight, and it’s for a mole of molecules, not just one). From here on, we’ll
abandon that nonsensical term and call it molar mass.
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then using M = Nym and R = Nakp. So we have shown, via equipartition,
a direct connection between the temperature and the translational kinetic
energy.

Example 7.1 Speed of Nitrogen in the Atmosphere

What is the typical speed of a nitrogen molecule in the atmosphere at
room temperature of 22° C?

Solution: First we need to convert the temperature to Kelvin: T =
273 + 22 = 295 K. The molar mass of elemental nitrogen is 14 g/mol.
However, nitrogen in the air is in molecular form, N2, which has two
nitrogen atoms per molecule, and a molar mass of 28 g/mol. We may
use Eq. (7.4), but to be consistent with SI units, we should convert
the molar mass to kilograms:

o _ [3RT _ [3(8:31]/molK)(205K)
therm = A/ T T 0.028 kg/mol

=512m/s (7.5)

which is the same as about 1150 m.p.h. Room temperature molecules
are fast!

A variation of this approach (i.e., using the equipartition theorem) can
be used to determine how much a typical molecule is displaced from its
equilibrium position but in the solid phase only! This is discussed (along
with an example) in Sec. 7.5.

7.3 The Liquid State

In the liquid state, the pair potential “springs” are continually pushing and
pulling and then getting stretched to the distance where they weaken and let
go. In this way, molecules freely change their neighbors and slide past one
another, which is why a liquid can flow. In this complicated picture, it is not
possible to make a simple calculation for the thermal potential energy. The
molar specific heat depends in a complicated way on the details of the pair
potential, and so it varies considerably from material to material. While
physicists and chemists have developed advanced theories for describing the
liquid state, these are beyond the scope of this course.
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Liquid molecule C (J/mol-K)

water H>O 75.3
methanol CH3OH 79.5
ethanol CoH;0H 112.4
acetone (CH3)2CO 125.5
benzene  CgHg 134.8

Table 7.1: Molar specific heats of selected liquids. Data is taken at room temper-
ature.

However, if we are given a measured specific heat, such as that of water,
we can still relate changes in the thermal energy to temperature changes via

AEtherm = nC’hqAT (76)

Measured values of the specific heat are given for a few different liquids in
Table 7.1.

Note that Cjiq is different than the specific heat of the solid state for
the same material. It is typically larger. For example, for copper molar
specific heat in the liquid phase is Ciiq = 36.3 J/mol-K, compared to Cs =
24.4J/mol-K in the solid phase.

7.4 The Gas State

In the gas phase, most of the time the molecules are so far apart that they
exert no force on each other. The exception is the brief molecular collision,
where the pair potential plays a role in determining the forces that they
exert on each other during the collision. However, after the collision the
pair of molecules head off in their new directions with new speeds, moving
rather quickly out of range of each other and feeling no force. The details of
the molecular collisions are complicated, but we can avoid having to worry
about them by making use of the equipartition theorem.

The total thermal energy for a gas is, to an excellent approximation,
purely kinetic, as the molecules are too far apart to have an appreciable
potential energy. However, the kinetic energy may consist of both transla-
tional and rotational kinetic energies. For a monatomic gas molecule, such
as argon, there is no contribution to rotational kinetic energy and so

2

Erolecule = Kirans = %mvi + %mvi + %mvz. (monatomic ideal gas) (7.7)

There are three quadratic contributions to the energy. The equipartition
theorem says, therefore, that the average thermal energy per molecule is
3(3kpT). Therefore, the total thermal energy is

Etherm = N{(Bmolecute) = 5NkpT = 2nRT. (monatomic ideal gas) (7.8)
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Figure 7.2: Molecular nitrogen, No, has two distinct axes of rotation, both of
which contribute to the molecular kinetic energy.

However, many gas molecules are diatomic, such as N9, which makes up
about 78% of our atmosphere, and O2, which makes up most of the rest.
These dumbbell-shaped molecules have significant rotational kinetic energy
as well as translational kinetic energy, as shown in Fig. 7.2. Their molecular
energy is given by

FErolecule = %mfuz + %mvg + %mvg + %I 1w% + %Igwg (diatomic ideal gas)
(7.9)
where wy and wy are the angular frequencies of the molecular rotation about
the two axes indicated in Fig. 7.2. The details of the molecular mass or
rotational inertia again do not matter, and the equipartition theorem now
gives

Etherm = N{(Emolecute) = 5NkpT = 3nRT. (diatomic ideal gas) (7.10)

These results can be combined into one expression,

f !
2 2
where f is the number of degrees of freedom, or the number of quadratic
terms appearing in the energy of a molecule. So f = 3 for a monatomic
ideal gas, and f = 5 for a diatomic ideal gas.

Given the usual definition of molar specific heat, AFiperm = nCAT, we
may identify

Eiverm = =NkgT = =nRT. (ideal gas) (7.11)

Chonatomic = 3R =125J/mol'K,  Caiatomic = 3 = 20.8 J/mol K.
(7.12)
As Table 7.2 shows, these values are highly accurate.

Here is an application: Argon gas is the most abundant monatomic gas in
the atmosphere, and is technologically useful since monatomic gases conduct
heat slower than diatomic gases, due to the smaller heat capacity. Modern
double-glazed windows have argon gas between the two sheets of glass, to
minimize the rate of heat transfer through the window.
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Gas Type C (J/mol-K)
neon (Ne) monatomic 12.5
argon (Ar) monatomic 12.5
hydrogen (Hz)  diatomic 20.5
oxygen (O2) diatomic 21.1
nitrogen (Ng) diatomic 20.8

Table 7.2: Molar specific heats (at constant volume) of selected gases.

In solids and liquids, sound waves move by molecules pushing on their
neighbors. In a gas, the molecules are not in contact with each other to
push and pull, and so sound propagation is fundamentally different: the
molecules must travel from collision to collision for the sound wave to move.
Thus, the speed of the sound wave is essentially the thermal speed of the
molecules themselves, which makes for much slower speed of sound. While
we will skip the derivation, one can show that the speed of sound in an ideal

gas is given by
[vYRT
Usound = \/zvtherm = ’YW (713)

We have introduced the parameter v, which is often called the “adiabatic
exponent” and is defined as

f+2
= 7.14
7 (7.14)
where f is again the number of degrees of freedom. This gives us
5 . 7 . .
T=3 (monatomic), T=g= 1.4 (diatomic). (7.15)

We will see v again in the next lecture, since it also plays a role in funda-
mental gas processes.

Notice that the speed of sound in a gas is dependent on the temperature,
since the thermal speed depends on temperature, while for liquids and solids
the speed of sound is essentially independent of temperature.

Example 7.2 The Speed of Sound in Air

Estimate the speed of sound in air at room temperature of 22°C =
295 K. Use the average molar mass based on an approximate compo-
sition of 78% Ny and 22% Os.



148 CHAPTER 7. LIQUIDS, GASES, AND PHASE TRANSITIONS

Solution: For the molar mass, we use the molar masses of nitrogen
and oxygen to find

M = 0.78(28 g/mol) + 0.22(32g/mol) = 28.9 g/mol. (7.16)

Both of these gases are diatomic, so we get the sound speed

_ [yRT  [1.4(8.31J/mol-K)(295K)
Psound = /T T 0.0289 kg /mol

= 345m/s. (7.17)

That’s a pretty accurate value. To get a more precise value we would
need to know the amount of water vapor in the air and a few other
details.

7.5 Phase Transitions

Heat up an ice cube and it melts. Heat up a chunk of copper and it melts
also, albeit at a much higher temperature. What is melting, and what deter-
mines the temperature at which a substance melts? Our ball-spring model,
taken literally, cannot exhibit melting, because no matter how energetically
the molecules vibrate, they are still connected to the same neighbors. But
we should recall that the spring was only an approximation to the molecu-
lar pair potential, valid when the thermal energy was low enough that the
molecules were mostly near the minimum of their potential well. Once a
pair of molecules is stretched far enough apart, their interaction differs from
a spring in that the attractive force between them weakens and ultimately
becomes negligible (see Fig. 6.1). So we need a mental picture of a “spring”
that weakens and “gives up” under too much stretching.

We can use the ball-spring model to make a rough estimate of when melt-
ing should occur. The equipartition theorem tells us how far the molecules
move in their vibrations. Let x be the displacement of a molecule from
its equilibrium position in the z-direction. The average value of x is zero,
because the molecule is displaced equal amounts of time in the +z and —x
directions. But the average value of 22 is not zero and is given by (using
the equipartition theorem)

kgT
Esp

This tells us the typical size of the excursions. We can define a thermal
displacement magnitude

kgT
Ltherm = V <«752> = ]f ) (719)
sp

($kopr?y = 3kop(2?) = SkpT. = (2%) = . (7.18)
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which exhibits the reasonable behavior that the higher the temperature, the
farther the molecule moves (on average) from equilibrium.

Example 7.3 Wiggling copper atoms.

Copper is a solid at room temperature, T' = 295 K. As the copper atom
oscillates about its equilibrium position, what is the typical magnitude
of its displacement in the z-direction?

Solution: From Eq. (7.19), we get

(1.38 x 10-23 J/K) (295 K) n
Ftherm \/ 29.6N/m Tx 10 m (720)

where we used the copper spring constant from chapter 6. Note that
we used SI units, SO Tiherm COmMes out in meters.

Is this answer reasonable? Recall that the equilibrium distance be-
tween copper atoms is d = 2.28 x 107'%m, which is about 20 times
larger. So at room temperature, copper molecules are vibrating some-
where around 5% of the distance of their separation. That sounds
plausible.

Melting occurs when the molecular excursions become an appreciable
fraction of the bond length d, an idea is known as the Lindemann criterion.
Lindemann found empirically* that a reasonable estimate for the melting
temperature can be obtained by setting Ziperm =~ d/10. Note that if z¢perm =~
d/10, it does not mean that each atom in the solid is vibrating precisely d/10
from the equilibrium; some are going further, and some are going less. The
Lindemann criterion implies

kpTm
ksp

dky,

7.21
100k ( )

~d/10 = T,=

Ltherm =

This is not an highly accurate estimate, but it does capture some general
features. For example, lead has a relatively low melting temperature, which
is evidently due to its weak spring constant. An estimate for copper, based
on the ball-spring parameters, is

T~ (2.28 x 10719m)%(29.6 N/m)
™ 100(1.38 x 10-23 J/K)

= 1120K (7.22)
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Material T, (K) Ly (kJ/mol) T, (K) L, (kJ/mol)

Oxygen 54.4 0.444 90.2 6.82
Nitrogen 63.2 0.72 77.4 5.56
Ethanol 159 5.02 352 38.6
Water 273 6.01 373 40.6
Lead 600 4.77 2022 180
Copper 1358 13.3 2835 300
Iron 1811 13.8 3134 340

Table 7.3: Melting and vaporization temperatures for a few materials, along with
the latent heats of fusion and vaporization.

which is comparable to the measured value of 1358 K. Iron has a stronger
spring constant that copper, and correspondingly a higher melting temper-
ature.

In the solid state, whenever thermal energy is added to an object, the
temperature increases. However, when the temperature of a solid reaches
the melting temperature, additional thermal energy no longer causes tem-
perature increase but rather phase change. Adding a little thermal energy
to a solid at the melting temperature causes a few of the molecules to break
from the lattice structure and become liquid. Adding more thermal energy
causes even more molecules to become liquid. While this is happening, the
temperature of the material is not changing. Rather, a solid with temper-
ature T,, is being converted to a liquid at temperature 7T;,, as shown in
Fig. 7.3. The amount of thermal energy required to convert one mole of a
solid to a liquid is called the latent heat of fusion, and denoted by the sym-
bol L. Given the latent heat of fusion for a material, it is straightforward
to determine how much energy is needed to melt a certain amount of that
material:

|AEherm| = nLy, (melt /solidify) (7.23)

where n is the number of moles of the material. This same relation can
be used to determine how much energy is released when a certain amount
of a liquid is frozen into solid form. Energy must be added to melt some-
thing, and energy is released when something freezes. Latent heats for a few
materials are given in Table 7.3.

4i.e., simply by looking at the experimental data
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Figure 7.3: Shown is FEiperm versus T for one mole of a typical material. The
slopes in the solid phase and liquid phase are the molar specific heats,
which are not typically equal to each other. The vertical jump at T},
represents the latent heat of fusion, i.e., the amount of thermal energy
required to change phase.

Example 7.4 Melting lead

Calculate the amount of thermal energy that has to be added to 3.0
moles of lead at room temperature to melt % of the lead.

Solution: This is a two-part process. First the temperature of the
solid lead solid must be raised to its melting temperature. Then the
lead can be melted.

In the first part of the process the temperature of all of the lead
increases to 600 K. The thermal energy change corresponding to this
is given by

AEY) = n CAT
— 3.0mol x 26.6.J/molK x (600K — 295 K)
— 24.3k) (7.24)

In the second part of the process the phase changes, so the thermal
energy change necessary to melt two moles of the lead is given by

AE®)

therm

= n2Lf
= 2.0mol x 4.77 x 10® J /mol
—9.5k] (7.25)
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Combining these two thermal energy changes gives

(AEtherm)total = AE(I) + AE(2)

therm therm

— 24.3kJ 4 9.5kJ
= 33.8kJ (7.26)

In this calculation, we used the measured value for the molar specific
heat for lead (see Table 6.1). We could have used the Dulong-Petit
(ball-spring) approximation (C' = 3R) which would have given us a
result very close to the value that we calculated here.

Note also that if we wanted to start with 2 moles of liquid lead and 1
mole of solid lead both at 600 K, and cool it down to a solid at room
temperature, the same calculation would tell us how much thermal
energy we would need to remove. It would also be 33.8kJ.

For most substances, there exists a boiling point separating a liquid
phase from a gas phase. At the molecular level, the liquid state has nearly
solid-like density, with molecules packed close together and fairly near the
minimum of the potential well. The transition to the gas phase requires
pulling these molecules apart and setting them free, where they have no
neighbors. Let Fiinq be the depth of the potential well, that is, Fying is the
amount of energy needed to bring a pair of molecules from their equilibrium
separation to far apart from each other (see Fig. 7.4(a)). Vaporization (or
boiling) occurs roughly when kT &~ Ejy;nq, so we can estimate the boiling
temperature as

Eping
T, ~
v kB

. (7.27)

Example 7.5 Molecular Binding Energy

Estimate the molecular pair binding energy FEyinq for copper, using
the information in Table 7.3.

Solution: Copper vaporizes at T, = 2835 K, so we may estimate
Bty ~ kpT, = (1.38 x 1072 J/K)(2835K) = 3.91 x 10729 J. (7.28)

A convenient energy unit for describing molecular bonds is the electron
volt (eV), defined as

leV =1.60 x 10719 J. (7.29)
In terms of electron volts, then,
3.91 x 10720
BS, = . = 0.245¢V (7.30)

1.60 x 10-19J /eV
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Figure 7.4: (a) The pair potential depth Eyinq. (b) Removing a particle from the
liquid state requires an energy of about 10-12Fy;,q.

Like with melting, vaporization requires an input of thermal energy. As
thermal energy is added, the temperature remains fixed at the vaporization
temperature, while an increasing amount of liquid gets converted to gas.
The amount of energy required to convert a mole of a substance from liquid
to gas is called the latent heat of vaporization. This is used much the same
way as the latent heat of fusion:

|A Etherm| = nLy. (vaporize/condense) (7.31)

As before, AFiperm is positive if we are adding thermal energy to vaporize,
and it is negative if we are removing thermal energy to condense.

One final comment about latent heat and phase transitions: the amount
of heat needed to melt or boil most common materials is quite large. Just
looking at Tables 6.1 and 7.3, you can see that it is necessary to add a “k”
to the units for latent heats Ly and L, (versus the units for molar specific
heat C') because we are usually talking about thousands of Joules of energy
to cause a phase transition for each mole of the substance. This is a very
important result with lots of practical applications. For example, this is the
reason why ice is so good at cooling your drink; it isn’t the low temperature
of the ice that is important, rather it is the large amount of energy that the
ice absorbs when it melts that does such a good job of cooling your drink.
Phase transitions are used all the time in cooling and heating applications. A
standard air conditioner or refrigerator typically uses some substance (e.g.,
freon) whose condensation and vaporization play a key role in the cooling
process. And your body uses phase transitions to keep cool on hot summer
days. Sweat (water) on your skin vaporizes, and most of the energy needed
for this phase transition comes from your body. This is how you can manage
not to overheat even if the surrounding air temperature is greater than your
body temperature. So, we would all be dead were it not for phase transitions.
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7.6 Pressure

Liquids and gases push outwardly on their surroundings. To describe this
push we introduce the concept of pressure. Consider a liquid or a gas en-
closed in some container, and focus on one wall of the container with area A,
such as shown in Fig. 7.5. The fluid pushes on the wall in the perpendicular
direction with a force of magnitude F'. Pressure is then the force per area

F

== 32

and has units N/m?. This combination of units is given the name pascal
(Pa), that is, 1 Pa = 1 N/m?. Atmospheric pressure is given by

Patm = 1.01 x 10° Pa = 101 kPa. (7.33)

Note that pressure applies to more than just liquids and gases. Any time
that there is a force exerted on a surface, you can define a pressure simply by
dividing that force by the surface area. Conceptually, the pressure indicates
how “spread out” the force is, i.e., if the same force is exerted over a larger
surface area, then there is less force per unit area (smaller pressure) and each
part of the surface experiences a smaller force. That is why, for example,
it is useful to wear snowshoes with a large surface area when walking over
fresh snow — the downward force you exert on the ground is spread over a
larger area, resulting in a smaller pressure on the snow, so the snow doesn’t
collapse.

Pressure does not have a direction. If we consider some point in the
fluid, pressure is an outward push in all directions. This outward push is
balanced by an identical outward push from a neighboring region of the gas.
Only at the boundaries of the gas is there an imbalance — here the enclosed
gas is only pushing from inside — and that is where we can measure the
pressure. And note: a gas can ONLY push on a surface; it NEVER
pulls!!!

We can use our picture of the gas state to derive the pressure of a gas.
In the ideal gas approximation we ignore collisions between the molecules
entirely, and treat each molecule as bouncing back and forth between the
walls of the container. The particles bouncing off the walls exert a force on
the wall, and this is precisely the origin of pressure.
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Figure 7.5: A gas enclosed in a container of length L, with the shaded wall having
area A.

Example 7.6 Pressure and Balloons

Explain qualitatively how the gas inside an inflated balloon prevents
the balloon from collapsing.

Solution: When a balloon is inflated, the rubber is stretched in all
directions, resulting in an increased tension. At every point along the
surface of the balloon fabric, the tension pulls in all directions along
the surface. Because of the curvature of the balloon, these tension
forces add up to give a net inward tension force.

The inward components of the tension do not cause the balloon to
collapse because there is an outward force due to air molecules trapped
within the balloon bouncing off the inner surface of the balloon. Each
time a molecule bounces off a piece of the balloon, it gives that piece
a small outward kick. Of course, there are also molecules outside the
balloon, and each time one of these bounces off the balloon, it gives
a small inward kick. If the outward and inward forces were balanced,
which is what happens with an open balloon, then the net force would
be the tension force, and the balloon would rapidly shrink.

But what if the collisions from the inside molecules are more frequent
and/or harder collisions? Consider that there are around 10% gas
molecules in a typical balloon, and they are moving quite fast at typical
room temperatures (see Example 1). There are a lot of collisions
occurring each second between gas molecules and the inside of the
balloon. The result of all of these collisions is an outward force exerted
on the balloon fabric by the gas molecules. This outward gas force
opposes the inward components of the tension and the inward force
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Figure 7.6: The z-component of velocity changes sign, while the y-component of
velocity is unchanged.

due to the collisions of all the gas molecules on the outside, and as a
result the balloon does not collapse.

7.7 The Ideal Gas Law

Now that we know how it is that a gas can exert a pressure, we can use
these ideas — along with the previous discussion of thermal velocities of
gas molecules — to calculate how the pressure relates to the temperature
of the gas, the number of gas molecules (or moles) and the geometry of the
container holding the gas. From this we will derive one of the most useful
relations in thermodynamics: the ideal gas law.

A collision with a wall is shown in Fig. 7.6. Note that the z-component of
velocity changed sign, while the y-component of the velocity was unchanged.
If we focus on v, we can see that the molecules in Fig. 7.5 will bounce off
the shaded wall and change the sign of v,, then a time L/v, later they will
bounce off the back wall and head back toward the shaded wall. They will
likely bounce off the side walls en route, but this has no effect on v,, so
we can ignore it. Thus the time between collisions on the shaded wall is
At = 2L /v, (the factor of two coming from the trip away and then back).

The force on the wall due to the particle is zero in between collisions,
and then very abruptly some non-zero value during the collision. Viewed as
a function of time, the force would be a series of spikes, since each collision
is short in duration, and then there is no force while the particle travels
to the other side of the container and back again. What we feel as steady
pressure is the time average of many collisions, so we would like to obtain
an average of this force over time.
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We can calculate this time averaged force first by noting that the force
of the molecule on the wall is, by Newton’s third law, equal and opposite
the force of the wall on the molecule. The force of the wall on the molecule
causes a change in the z-component of momentum, p, (see Fig. 7.6). Note
that the symbol p here, and in the next two equations, refers to momentum,
not pressure. We apologize for the fact that the standard symbols for these
quantities are the same (but there are only so many letters to use). The
momentum change is given by

Apy = —mug; — mu; = —2muy. (7.34)

This momentum change happens once every time interval of At = 2L /v,
(the travel time between collisions), so we can conclude the average force of
the wall on the molecule is

mAv,  Ap, 2muy, muv?2

Favg,x:maavg: At = Al :_2L/’Ux:_ Lx (735)

The average force of the molecule on the wall is then equal and opposite. If
we consider all N molecules, then we can conclude
mo?,
Fon wall,z = Z I, — (736)

7

where v; ,, is the z-component of the velocity #; of the ith particle. We can
appeal to the equipartition theorem, which tells us

<Z Ymo2) = N (SksT), (7.37)

and so the average force on the wall is given by

NkpT
Fon wall,z = LB . (738)

Finally, we use the definition of pressure to conclude

. Fonwall,x . NkBT . NkBT
B A ALV

(7.39)

where we have used V' = AL (see Fig. 7.5). This last relation holds regardless
of the shape of the container, and we have thus derived the ideal gas law

pV = NkgT or  pV =nRT. (7.40)

This is another universal law where the details of the molecules are irrele-
vant: the molecular mass canceled out, and any interaction forces between
the molecules negligible as long as the gas is dilute enough.
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This is an extremely accurate law for most gases at room temperature
and higher temperatures. Note also that it does not depend on the mass of
the gas molecule, or whether it is diatomic or monatomic.

In Eq. (7.40), both sides of the equations have units of energy. If we
use SI units, pressure should be measured in pascal, and volume should be
measured in cubic meters. However, we may take advantage of the relation

1J = (1Pa)(1m?) = (1073 kPa)(10°L) = (1kPa)(1L), (7.41)

where L is liters. This tells us we can use kilopascals and liters and the
product pV will turn out to be joules.

Example 7.7 Volume of a Mole of Gas
Calculate the volume in liters occupied by a mole of ideal gas at a

temperature of 22° C and atmospheric pressure.

Solution: Starting from Eq. (7.40), we solve for V:

nRkRT _ (1mol)(8.31J/mol-K)(295 K)

V== 101 kPa

=24.2L. (7.42)

Note that we had to convert temperature from Celsius to Kelvin in
this calculation. This is important: you always have to use Kelvin
for the temperature when using the ideal gas law.

Example 7.8 Using Ratios in the Ideal Gas Law

An ideal gas at a temperature 50° C is in a car piston. The piston
compresses the gas to 1/3 of its original volume. The pressure increases
by a factor of 5 during this process. Calculate the new temperature
of the gas in the piston.

Solution: We don’t know the volume, pressure or number of moles of
gas at any point in this problem, so we will have to solve this problem
using ratios.

First, we need to convert temperature to Kelvin: 7' = (50 + 273) K =

323 K. Next, write down the ideal gas law: pV = nRI. We are
interested ultimately in the final temperature, so re-write this as:

=PV

= (7.43)
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This holds both initially and after the compression, so T1 = p1V1/(n1R)

and TQ = pg‘/z/(ngR).
(p2Vz>
T no R p2 Vo
22 _ Mt/ _P2Y2 7.44
Th p1Vh 1 V1 (7.44)
an

since no = nq1 and R is a constant. So, the final temperature is

p2 Va2
To=T -—-—=323K) -5
2 1p1 i ( )

or (538 — 273)° C = 265° C.

Note that when using ratios to determine a new value for the pressure
or volume, it doesn’t matter what units we use for those quantities
because the units will cancel between numerator and denominator.
Though it is still always necessary to use Kelvin for temperature.

1
5 = 38K, (7.45)
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Problems

1. Melting iron

(a) Use your results from Problem 6.2 to estimate the typical thermal
displacement for atoms in a chunk of solid iron at room temperature.
(Assume a room temperature of 22° C.) Compare your result to the
typical lattice separation for the iron atoms. Based on this result
and the Lindemann criterion, explain why it is reasonable that iron
is a solid at room temperature.

(b) Now, assuming that iron melts when the typical displacement is
one-tenth the lattice separation (i.e., Ttherm ~ d/10, which is the
Lindemann criterion), estimate the melting temperature of iron.
Compare your result to the experimental value.

(c) Write a sentence explaining in your own words why the melting
temperature should be related to the typical thermal displacement
Ztherm- Don’t worry so much about the factor 1/10 in the Lin-
demann melting criterion, but your explanation should state why
melting occurs when Ziherm gets sufficiently large.

2. Calculate the thermal speed at temperature 22° C of

(a) molecular oxygen (O2)
(b) methane (CHa)
(c) carbon dioxide (CO3)

3. A 100 g piece of ice at 0° C is placed into a container holding 200 g of
water, initially at temperature 25° C. Heat flows from the water to the
ice, cooling the water and melting the ice.

(a) Calculate how many moles of ice and how many moles of water are
initially present.
(b) Determine how much heat flows out of the water in cooling to 0° C.

(c¢) Determine how many moles of ice are melted by this added heat.

4. Compare two containers of the same ideal gas; each container has the
same volume and the same number of molecules. The temperature of the
gas in the first container is twice the temperature in the second container,
Ty = 2T5. Find the following ratios

(a) Utherm,l/”therm,?-
(b) <Kmolec,1>/<Kmolec,2>~
(c) p1/p2.
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5.

10.

11.

12.

How many moles are in 3 liters of ideal gas at pressure 200kPa and
temperature 100° C?

. Using the vaporization temperature of water to estimate the pair binding

energy for water molecules.

. Calculate the speed of sound in a gas of pure molecular hydrogen at a

temperature of 22° C.

. One mole of water at 20° C has 20kJ of thermal energy added. Calculate

the number of moles which remain in the liquid state.

. Rank the following according to the speed of the molecules at room

temperature, from fastest to slowest:
(a) copper (solid)
(b) water (liquid)
)
)

(c

(d) molecular nitrogen (gas)

krypton (gas)

A fixed amount of ideal gas is at temperature 25° C, volume 4.0, and
pressure 100 kPa. The temperature of the gas is increased to 80° C while
the volume is decreased to 3.2 L. Determine the new pressure.

For silver, the ball-spring parameters are m = 1.79 x 107%°kg, d =
2.58x1071%m, and kg, = 21.4N/m. Based on this information, estimate
the melting temperature and latent heat of fusion for silver.

Let’s play microwave. This is just fun, and you’ve got to do it.
Load up the molecular dynamics applet, select the solid preset, and click
“Start”. Now we’re going to melt the solid without adding heat.® This is
exactly what a microwave oven does: the microwaves do work, pushing
and pulling molecules around, and this gets converted to thermal energy.
So let’s do the same thing. You can “pull” a molecule by clicking on it
and dragging it. Reach in and pull on a molecule, and then wait and
watch how the system responds. Now do it again. Keep doing it until
you've fully melted the solid. (Notes: it might help to reduce the “An-
imation speed” so that you can see what is going on. You also might
have to pull your mouse a large distance quickly before letting go when
“pulling” a molecule.)

°It’s interesting to note, actually, that microwaves actually aren’t effective at melting

solid water — i.e., ice — because the frequency of a typical microwave oven is one that
doesn’t resonate with ice. So, this problem is probably more relevant to melting of a stick
of butter or a Jello mold.



162 CHAPTER 7. LIQUIDS, GASES, AND PHASE TRANSITIONS

(a) Describe what you observe in the simulation and what you had to
do to melt the solid by pulling on individual atoms. Question:
Why would pulling on just one or two individual atoms melt the
entire solid?

(b) Now think of something else cool to do with the applet. Write a
few sentences describing what you did and what you found.

13. Aquaman buys a balloon filled with a fixed amount of helium from a
street vendor in New York City on a hot 37° C day. He measures the
pressure inside the balloon to be 110kPa. When he arrives at the un-
derwater city of Atlantis, he discovers that the balloon is now 0.40 times
the original volume. His thermometer indicates that the ocean has a
temperature of 2° C. Determine the pressure inside the balloon.

14. Let’s consider the ideal gas law pV = nRT qualitatively from a perspec-
tive of molecules of the gas hitting the shaded side of a container, as
shown in Fig. 7.7.

Y
\
area A

X

Figure 7.7: For problem 14. Gas in a container of length L and cross section A.

(a) Considering collisions of gas molecules with the wall, explain quali-
tatively why the pressure of a gas increases if the temperature of the
gas increases, with everything else constant. There are two different
reasons why increasing the temperature increases the pressure.

(b) Explain qualitatively why the pressure of a gas increases if the num-
ber of moles of gas molecules in the gas increases, with everything
else constant.

(¢) Explain qualitatively why the pressure increases if the volume of the
container holding the gas decreases, with everything else constant.
There are actually two different reasons why decreasing the volume
increases the pressure: one is a result of decreasing L and the other
is a result of decreasing A.
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15. In this problem you will make some simplifying assumptions and estimate
the pressure of a gas of nitrogen molecules from a microscopic picture of
the gas. Assume that the gas is in a 10cm x 10 cm x 10 cm box at room
temperature, T' = 22° C. The assumptions are:

e All the molecules travel at the speed viperm derived in Example 1.
This is not actually true — there is a spread in molecular speeds
around the average — but viperm 1S a typical speed.

e One third of the molecules in the gas travel in the 4z-direction,
one third travel in the 4y-direction, and one third travel in the
+2-direction. This is obviously not true, but this assumption will
simplify the calculations.

/

10 cm

‘ . e
3 Utherm
10cm (R B

-~ 10ecm —

Figure 7.8: Figure for problem 15.

(a) Calculate the numerical value of the change in the momentum of a
single nitrogen molecule traveling in the z-direction after it collides
elastically with the right wall of the container. (If you need help
determining the speed of the nitrogen molecules, see Example 1.)

(b) Calculate the number of times this single nitrogen molecule collides
with the right wall of the container in 1 second.

(c) Calculate the total change in momentum of the molecule in 1 second
due to collisions with the right wall of the container.

(d) Calculate the average force on the right wall of the container due
to collisions with the single molecule.

(e) At room temperature and atmospheric pressure, the number den-
sity, (i.e., the number of molecules per unit volume) of nitrogen
molecules is 2.49 x 10 molecules/cm3. Use the second of our sim-
plifying assumptions and calculate the average force on the right
wall of the container due to all of the molecules in the gas.

(f) Calculate the pressure that the gas exerts on the right wall of the
container. Compare your answer to atmospheric pressure (1atm =
1.01 x 10° Pa).
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Chapter 8

(Gas Processes

There are many very useful and important things that can be done with
gases. Burning gases in an internal combustion engine can power a car.
Boiling water (and its vapor) can turn a turbine in an electrical power gen-
eration plant. Expanding your lungs enables your body to draw in air so
that you can extract the oxygen necessary for life. Vaporization and ex-
pansion/compression of methylene chloride and water allows a dunking bird
to bob up and down indefinitely over a glass of water in your dorm room.
Numerous gas processes in the atmosphere drive the weather system on the
Earth. Expanding and contracting gaseous bladders enable fish to swim
without sinking to the bottom or floating to the surface. Adiabatic heating
of a collapsing cloud of hydrogen in space provides the spark that triggers
nuclear fusion and enables the birth of stars (including our sun). Hot gases
shooting out of an engine can propel an airplane or a rocket. And many
chemical reactions produce gases that do work on systems (e.g., inflating
airbags, firing ammunition, ...).

These are just a small sample of the ways in which thermodynamic pro-
cesses play a critical role in practical applications and in the basic func-
tioning of the universe as we know it. In all of these cases, it is critical to
understand several things: (1) how much work is required to complete the
process or, alternatively, how much work the gas does on the outside world
in completion of the process; (2) how much energy in the form of heat must
be added to the gas (or released from the gas) during the process; and (3)
how the thermal energy of the gas either increases or decreases during the
process. From this perspective, by far the most important mathematical
relation required for analyzing gas processes is one that we have already
seen: the First Law of Thermodynamics, Eq. (6.28), which we repeat here
for reference:

AEtherrn = Qin + Won' (81)

In this chapter, we will discuss in detail how we can calculate the work,
heat, and thermal energy changes that occur in thermodynamic processes,

165



166 CHAPTER 8. GAS PROCESSES

but we first discuss a way to depict these processes graphically.

8.1 Quasistatic processes and p-V diagrams

An ideal gas in equilibrium is characterized by four quantities, pressure
(p), temperature (7), volume (V'), and the amount of gas, often given as
the number of moles (n). These quantities are not independent; they are
related by the ideal gas law: pV = nRT. Therefore, for a fixed amount of
gas, knowledge of two out of the three quantities, p, V', and T suffices to
specify the state of the equilibrium gas. An important tool used in analysis
of thermodynamics processes that takes advantage of this fact is a plot of
pressure versus the volume of a gas, referred to in short as a p-V diagram.
The temperature T for the state of a gas represented by a point on a p-
V' diagram is usually not indicated on the diagram, but it can always be
inferred from the ideal gas law (for a gas in equilibrium).

A changing volume and/or pressure results in a curve on a p-V diagram.
Figure 8.1 shows a few different processes. Figure 8.1(a) shows a constant
pressure process, with an arrow that indicates an increasing volume (ex-
pansion). If the arrow were turned around, the same graph would show a
constant-pressure compression. In the literature, you may see a constant-
pressure process referred to as an isobaric process (“iso” meaning “same”
and “baric” meaning “pressure”). Figure 8.1(b) shows a constant-volume
process, with an arrow that indicates an increasing pressure. These processes
are sometimes referred to as isochoric.

These diagrams are very useful first because they are directly related
to the work done on or by a gas and second because they are convenient
for showing the time evolution of a thermodynamic process, particularly
cyclic processes that repeat over and over again, as is the case with many
engineering systems. The time evolution represented by curves on p-V are
assumed to be slow enough that the gas is always very close to equilibrium.
Slow processes that meet this criterion are called quasistatic.

Figure 8.1(c) shows a few constant temperature (isothermal) processes.
Assuming the number of moles of the gas doesn’t change during a process,
the ideal gas law can be used to determine the relationship between the
pressure p and volume V for an isothermal process: pV = nRT implies
p = nRT/V. The result is a swoopy curve (yes, “swoopy” is a valid sci-
entific expression) since the pressure depends inversely on the volume if n
and T are constant. The resulting curve on a p-V diagram is referred to
as an isotherm and the same graph can show several isotherms, each one
characterized by its value of the temperature. Figure 8.1(c) shows that the
isotherms corresponding to higher temperatures lie above and to the right
of those corresponding to lower temperatures on a p-V diagram. It can also
be seen that a constant-volume increase in pressure results in an increase in
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Figure 8.1: Processes on a p-V diagram. (a) Constant-pressure expansion (iso-
baric). (b) Constant-volume process (isochoric). (c) Three constant
temperature processes (isothermal).

temperature, because this process takes the system up to a higher tempera-
ture isotherm. Similarly, an isobaric expansion takes the system to the right
to a higher temperature isotherm. These graphical results are, of course,
consistent with the ideal gas law.

Example 8.1 Sketching p-V diagrams.

A gas in a cylinder starts at a temperature 77 = 300K, volume V; =
3.0L, and pressure p; = 100kPa. It is expanded at constant pressure
to twice its initial volume. It is then compressed isothermally back to
the original volume, after which it is cooled down to a temperature
which is half of the initial temperature. Sketch a p-V diagram for the
entire process 1 — 2 — 3 — 4.

Solution:

The p-V diagram for the process is displayed in Fig. 8.2. The illus-
trated constant-pressure expansion (1 — 2) also results in a tempera-
ture increase. Since pV = nRT, a doubling of the volume (to 6.0 L at
constant-pressure results in a doubling of the temperature (to 600 K)
as well. So, after the isothermal compression (2 — 3), the gas is at
twice its initial temperature and therefore twice the initial pressure;
i.e., p3 = 200kPa. (You could also easily determine the pressure ps
by noting that with n and 7" both constant, paVo = p3V3.) The final
process (3 — 4) brings the gas to a temperature half of its initial value,
and since the final volume is the same as the initial volume, the final
pressure must by half of the initial pressure; i.e., p4 = 50 kPa.
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Figure 8.2: Solution for Example 1. Constant-pressure expansion (1 — 2) to twice
the initial volume, followed by isothermal compression (2 — 3) back
to initial volume, followed by cooling at constant volume (3 — 4) to
temperature half of the initial value.

8.2 Useful tools for applying the First Law

In this section we will treat in order the three terms that appear in the First
Law of Thermodynamics, as written in Eq. (8.1).

Changes in thermal energy (AFihorm)

In Chapter 7 you learned that the thermal energy of an ideal gas is

f

Etherm = E nRT, (82)

where f is the number of degrees of freedom of a molecule in the gas. From
this, it’s straightforward to see that

ABiporm = gnR AT (8.3)

So if we know the number of moles, and the temperature difference, we can
calculate the thermal energy difference without knowing anything about the
pressure and the volume.

There will be times when you know the pressure and the volume, but
not the number of moles, but it’s easy to calculate n from p and V using the
ideal gas law. There is a convenient simplification of this kind of calculation
that obviates the need to explicitly calculate n. Consider a gas with an
unspecified number of moles that that undergoes a process starting at p;
and V7, and ending at po and V5. The change in the thermal energy of the



8.2. USEFUL TOOLS FOR APPLYING THE FIRST LAW 169

gas is

AEBtherm = =nR(T>—T)
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= Lapv). (8.4)
We have found the thermal energy difference in a way that eliminates the
need to know n or T'!

Sometimes you won’t have enough information about p, V, T, or n to
calculate AFiperm directly. In those situations you might be able to use the
First Law, Eq. (8.1), if you know enough about the other terms, @;, and
Won.-

Heat flow in gas processes (Qin)

Direct calculation of the heat flowing into or out of a gas is, in general, a
difficult problem, and a topic of study in mechanical engineering. For most
of the problems we will study in PHY'S 211 you can calculate Q;, indirectly,
using the First Law, Eq. (8.1), because there will be enough information
about the other terms, AFEiperm and Wy,

There is one kind of gas process for which determination of Qi is easy:
adiabatic compression or expansion. That’s because the term adiabatic is
simply the name given to those processes in which @, = 0. Adiabatic
processes are the idealized versions of processes in which the gas is very well
insulated so that it doesn’t interact thermally with the external world. We
will talk more about adiabatic processes later in this chapter.

Work done during gas processes (Won, Why)

A simple system for analyzing the work done on a gas, or by a gas, is
illustrated in Fig. 8.3. A fitted piston (the shaded disk) with mass m and
surface area A is free to slide up and down the frictionless walls of the
cylinder, and seals a fixed amount of trapped in the volume below. In
equilibrium the force of the gas pushing up on the piston is balanced by
the net force of the external world pushing down (the combined forces of
gravity, the force due to atmospheric pressure, and any additional force that
you might be applying to keep the piston in place).

Imagine that the forces change ever so slightly so that the piston expe-
riences a small upward displacement A7, increasing the volume of the gas.
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Figure 8.3: Piston with surface area A in a cylinder containing a gas with volume
Veas and pgas.

The work done by the gas is

Wby = Fby gas on world * A7

Fby gas on world Ar COS(OO)
Pgas A Ar
= Dgas AV. (8.5)

The work done on the gas will be the negative of this, because the angle
between the vector force ﬁworld on gas and the displacement A7 is180°.

For infinitesimally small changes, AV — dV, allowing us to use inte-
gration to calculate the work for processes during which the pressure does
not remain constant:

1%} Va
Weon = —/ pdV and Wy, = / pdV, (8.6)
V1 Vl

Although these results have been derived for expansion of a gas in the cylin-
der, they can be generalized to expansion and compression of arbitrarily
shaped volumes.

Since work has been expressed as an integral of pressure with respect to
volume, we see that the magnitude of the work done in a process is equal
to the area under the curve of the p-V diagram for the process between the
initial and final volumes.

NOTE: the sign of the work is critically important. For an expanding
gas, the gas is lifting the piston, and W, is positive, but W, is negative.
For a contracting gas the opposite is true. For a car engine, a positive value
of Wy, means that the car is able to drive, whereas a negative value for W,
means that you have to push the car to get it to go.
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NOTE about units: in standard units, if pressure is in N/m? (i.e., Pa)
and volume is in m?, the resulting calculated work will be in J. But in many
realistic problems, the pressure is given in kPa and the volume is given in
L. Since 1L = 1073 m? and 1 kPa = 10% Pa, a calculation of work using L
and kPa also gives an answer in J. So, it isn’t necessary to convert to Pa
and m? when doing these calculations.

8.3 Special case gas processes

Constant-volume process (isochoric process)

Constant-volume processes occur in a rigid closed containers whose volume
can’t change. (Constant-volume processes are also known as isochoric pro-
cesses.) The fact that the volume doesn’t change means that the work done
on the gas, [ pdV, is zero, as is the work done by the gas. This is consistent
with the fact that p-V diagrams for constant-volume processes are vertical
lines — there is no area under a vertical line.

The fact that Wy, = 0 greatly simplifies the First Law, Eq.(8.1).

Constant-pressure process (isobaric process)

For a process during which the pressure is constant, p can be taken out of
the integral for work. (Such processes are also known as isobaric processes.)
This gives

Va
Won = —/ pdV
Vi

Vo
= —p av
1

= —p(Va—M)
= —pAV (constant-pressure process). (8.7)

Again, this result is easy to see from a p-V diagram. For an isobaric process,
p-V diagram is a horizontal line of length AV. The area under the curve
is the area of a rectangle: height x width = p AV. (You must insert the
appropriate sign “by hand.”)

This isn’t quite as easy as the case of an constant-volume process, but
the Wy, term in the First Law is still pretty easy.

Constant temperature process (isothermal process)

If the temperature is held constant during a process, it is also known as an
1sothermal process. The first thing to note about a constant-temperature
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process is that AFiperm = 0, because AT = 0, so one term in the First Law
drops out.

As for the work term, the ideal gas law tells us that if the temperature is
constant, than it’s the product of pressure and volume, pV', that’s constant,
not p or V individually. This complicates the evaluation of the work integral
slightly, but we can use the ideal gas law to rewrite the pressure in terms of
the varying volume and constants, p = nRT/V. Then we can integrate:

Vi
Won = _/ pdv
\%

Vi nRT
= — —dv
[

= —nRT V]
= —nRT(InV;—InV;)
V
= —nRTIn <Vf> (constant-temperature process). (8.8)
i
And, as always, the work done by the gas is the negative of this result:
Wiy = =Won = nRT In(V;/V;).
Useful trick: note that since the ideal gas law states that pV = nRT,
the work done by a gas during an isothermal process can also be written
as Wiy = pV In(V/V;). This is really useful if you know the pressure and

volume at any moment during the isothermal process, but don’t know the
temperature.

Straight-line process on a p-V diagram

Sometimes the p-V curve will be a straight line segment, although not ver-
tical (constant volume) or horizontal (constant pressure). The work term in
the First Law is easy to evaluate by determining the area of the trapezoid
under the line segment.

Adiabatic processes

In many real gas processes there is no heat flow either into or out of the
system; i.e., Qin = 0. This occurs if (a) the system is completely isolated
from its environment so there is no way for heat to be exchanged with its
surroundings (e.g., if it is surrounded by insulation); or (b) if the processes
occurs so rapidly that there simply isn’t enough time for there to be an
appreciable flow of heat into or out of the system. A process in which
Qin = 0 is referred to as an adiabatic process. By their very definition,
adiabatic processes are a special case in which one of the terms in the First
Law vanishes.
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Adiabatic process

Large T isotherm

Small T" isotherm

v

Figure 8.4: p-V diagram showing both isotherms and adiabats.

To calculate W, for an adiabatic process it is easier to use the First Law
than it is to evaluate the integral [ pdV: simply find AEiperm via Eq. (8.4)
and then use the First Law to determine W,,. We’ll discuss examples of
that technique in the next section.

First, however, we can quickly get an idea of how an adiabatic process
looks on a p-V diagram. Since Qj, = 0 for an adiabatic process, the First
Law becomes: AFEinerm = Won; .., any work done on the system goes into
increasing the thermal energy. And recall that the thermal energy of a gas
increases with the temperature of the gas. For an adiabatic compression,
Won > 0 which means that AFEiperm > 0. This means that for any adiabatic
compression, the gas heats up (i.e., the temperature increases). This makes
sense: we are doing work on the gas to compress it, and that work goes into
heating up the gas and increasing the temperature.

Since an adiabatic compression results in an increase in temperature,
the curve on a p-V diagram for an adiabatic compression must go to larger
and larger temperature, which means that an adiabatic process is associated
with a curve (an adiabat) that is steeper than those for isothermal processes
(i.e., “isotherms”) at any point where they would cross. This can be seen in
Fig. 8.4, which shows curves for both adiabatic and isothermal processes.

To make a quantitative statement about the functional form of the adi-
abatic curves, we need to consider the type of gas. As discussed in section
7.4, the thermal energy of a gas depends on the type of molecules in that
gas. (See Egs. (7.8), (7.10), and (7.11).) In particular, the behavior of the
gas depends on the number of degrees of freedom f and the “adiabatic ex-

ponent” v = % (Recall that v = % for a monatomic gas with 3 degrees of

freedom, and v = % for a diatomic gas with 5 degrees of freedom.) Without
going through the full derivation,’ an adiabatic process has pressure and

!The full derivation involves solving a differential equation, but differential equations
are not required for PHYS 211.
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volume that are related by the relationship
pV7 = constant (adiabatic process). (8.9)

From a practical perspective, this means that given three of the four quanti-
ties p;, Vi, py and Vy, for an adiabatic process the fourth can be determined
from the relation p;V;' = p fVJ] .

Similarly, a relation can be found between the temperature 7" and volume
V during an adiabatic process?:

TV~ = constant (adiabatic process). (8.10)

8.4 Examples

Example 8.2 Calculating work for gas processes

Calculate the work done on the gas for each of the three processes in
Example 1 (see Fig. 8.2).

Solution: Let’s deal with each of the three processes in turn:

e Process 1 — 2: This is a constant-pressure expansion, so p can
be taken out of the integral for for work:

Vo
Wy = / pdV
\%1

Va
= p/ dv
1%

= p(Va—VW)
(100kPa)(6.0L — 3.0L)
— 3001 (8.11)

The value of Wy, is positive, which makes sense because the
gas is expanding (the volume is increasing). A short-cut to the
result would be to recognize that the We can figure this out easily
enough by recognizing that W, is simply the area under the p —V
curve, which in this case is just a rectangle:

Wiy = (100kPa)(6.0L — 3.0L) = 300 J. (8.12)

The work done on the gas is W, = —W,, = —300 J.

2Simply combine Eq. (8.9) with the Ideal Gas Law.
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e Process 2 — 3: This is an isothermal compression, so Wy, =
—Why = —nRTIn(V3/V2). We don’t know how many moles of
gas there are, but we could figure it out using the Ideal Gas Law.
But we aren’t going to do that, because we can replace the
entire product nRT with either paVs or p3V3. So,

V-
Won = —paVa 1n<vz>

6.0L
= 4161. (8.13)

— (100 kPa)(6.0L) In (3'0L )

Note that this is a positive number, which makes sense since it is
a compression, and we know that W, is positive for a compres-
sion. Note also that the work for the process 2 — 3 has a larger
magnitude than that for process 1 — 2, which also makes sense
because there is a larger area under the curve 2 — 3 than under
the curve 1 — 2.

e Process 3 — 4: This is a constant-volume process, so Wy, = 0.
This is also consistent with work as area under the curve, as there
area under the curve for the process 3 — 4 is zero.

Example 8.3 Adiabatic expansion

A diatomic gas in a well-insulated container has an initial pressure,
temperature, and volume of 150 kPa, 300 K, and 3.5 L. The gas is com-
pressed to a volume of 0.5 L. Calculate the pressure and temperature
of the gas after the compression.

Solution: Since the container is insulated, Qi = 0, and this is an

adiabatic process. And since the gas is composed of diatomic molecules

at a temperature that isn’t too high, there are 5 degrees of freedom
f+2 7

for the gas and v = = 5 Since this is an adiabatic process,

pV7 = (constant), so so p;V;" =p ij;y , which implies

Vi ol
- ()

3.5L\7/°
— 150kPa | 22>
°0 a<0.5L>

= 2290kPa. (8.14)

To determine the temperature after the compression, remember that
in any adiabatic process TV7~! = constant, so

TV =TV (8.15)
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1 2 3 VL)

Figure 8.5: For Example 4.

which implies that

Vi
T, = T,
d (Vf>

T
3.5L\5?
= (300K) (0.5L>

= 653K. (8.16)

Note that the gas heats up, which is characteristic of any adiabatic
compression.

Example 8.4 A complete cycle

Consider a fixed amount of an ideal gas of diatomic molecules under-
going the processes shown in Fig. 8.5. The gas starts at point A in the
diagram and expands along the path A — B with no heat flowing
into or out of the gas.

(a) Calculate the pressure of the gas at point B after the expansion.
(b) Determine the net work done on the gas and the heat flow Q;, in
one complete cycle (A — B — C — A).

Solution: (a) Since the process A — B is adiabatic, pV7 = (constant)
and paV,] = ppVy so

Va\ /P LOL\"/°
—pa(22) =100kP o) = 97.7kPa. (8.17
PB = PpA <VB> a X 55L a ( )
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(b) We will calculate the work done on the gas for each of the three
processes and add up the results to get the net work. To figure out
the total heat flow @i, we could do something similar — i.e., calculate
Qin for each process and then add them up. But there is an easier
way: since we know that AFEipem = 0 for the complete cycle, once we
have determined the total W, for the complete cycle, we can use the
First Law of Thermodynamics to get @i, for the complete cycle.

Let’s start with process A — B. This is an adiabatic process, so
Qin = 0. Calculating work is tricky for adiabatic processes, so we’ll
find AFEiperm first and then use the First Law to get W,,. This is a
diatomic gas, so f = 5 and AFEiherm = %nRAT . We could calculate
Tp, but we won’t bother, because AFEiperm can be found with the
pressures and volumes given (see Eq. (8.4)):

ABherm = g(pBVB —paVa)
= g (27.7kPa x 2.5L — 100 kPa x 1.0L)
= —76.7J. (8.18)

We can now find the work done on the gas via the First Law:

Won = AE‘therm - Qin
= =-76.7J-0
= —76.71J. (8.19)

Process B — C is a constant-volume process (isochoric), so W, = 0.

Process C — A is a constant-pressure process (isobaric), so

Won = D AV
—p(Va— Vo)
= —100kPa(1.0L —2.5L)
= 150J. (8.20)

So, the net work Wy, done on the gas for the complete cycle A —
B—+C—Ais

W(l)rlnet — W£1_>B + WQB;—)C + WQCA—)A
= —=76.7J4+0+150J
— 733 (8.21)

As for the total heat flow ), for the entire cycle, we can use the First



178 CHAPTER 8. GAS PROCESSES

Law:

Qin = AEtherm_vvon

= —73.3J. (8.22)

This means the net heat flow during the entire cycle is 73.3 J flowing
out of the gas.
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Problems

1.

Three identical gas-cylinder systems are compressed from the same initial
state to final states that have the same volume, one isothermally, one
adiabatically, and one isobarically. Which system has the most work
done on it? The least?

. The relation between thermal energy and temperature depends on the

type of gas molecule: for a monatomic gas, AFiherm = %nRAT and
for a diatomic gas, AFiherm = gnRAT. In your own words — and
discussing explicitly the microscopic picture of gases — explain why it is
that you need to put more thermal energy into a diatomic gas than for
a monatomic gas to raise the temperature by 1 K.

. Consider a piston in a car engine that is compressing an air-gasoline

mixture before ignition, all in the gas state.

(a) Under what circumstances would the compression be adiabatic?
(There are a couple of ways to get an adiabatic compression, one of
which is more relevant to a car engine.)

(b) Use the First Law of Thermodynamics to argue that the gas tem-
perature increases if the compression is adiabatic. Where does that
additional thermal energy come from during this process?

. A gas with n moles of molecules starts with a temperature 17, pressure

p1 and volume Vi. Draw a p-V diagram for the following multi-step
processes (and label each process with its letter a, b, or ¢):
(a) The gas expands at a constant pressure to twice its initial volume.
(b) The gas is then compressed isothermally back to its initial volume.

(c) The gas then expands adiabatically back to its initial pressure.

. A gas with n moles of molecules starts with a temperature 17, pressure

p1 and volume Vi. Draw a p-V diagram for the following multi-step
processes:

(a) The gas is heated up at constant volume, doubling its initial tem-
perature.
(b) The gas expands adiabatically until the pressure returns to 1.5p;.

(c¢) The container no longer expands but a vent is opened, allowing gas
to escape until the pressure returns to the original pressure p;.

(d) The gas is compressed isothermally until the volume returns to the
original volume V.
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p (kPa)

200 1

100 2

Figure 8.6: For Prob. 6.

Calculate the work done on a gas as it undergoes the process shown in
the p-V diagram (Fig. 8.6).

A piston initially contains 1.2mol of a monatomic gas at a pressure of
210kPa, and a volume of 0.25 L. The gas expands at constant pressure
to a volume of 0.47L. Calculate the work done on the gas during this
process.

. A piston initially contains 0.35mol of a diatomic gas at a pressure of

105 kPa, a temperature 350 K and a volume of 9.7 L. The gas is ignited,
raising the temperature rapidly to 550 K without a significant change in
the volume. Calculate the work done on the gas during this process.

A monatomic ideal gas undergoes an isothermal compression from an
initial volume of 7.0 L and pressure 100 kPa to a final volume and pressure
of 2.0L and 350 kPa, respectively. The temperature along the isotherm
is 120° C.

(a) Determine the number of moles of this gas.

(b) Determine the work done on the gas during this process.

(c¢) Determine the heat flowing into the gas during this process.
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10.

11.

12.

13.

14.

Figure 8.7: For problem 10.

Consider a fixed amount of an ideal monatomic gas undergoing the adi-
abatic process illustrated in Fig. 8.7.

(a) Calculate the number of moles in the gas.

(b) Calculate the work done on the gas between points A and B.

(a) Use the Equipartition Theorem to determine a relation between the
thermal energy change A Fiperm and the temperature change AT for
a monatomic flattium gas where the molecules can move only in two
dimensions.

(b) Do the same thing, but this time for a diatomic flattium gas.

In problem 2 you explained the different factors, g vs. %, that appear

in thermal energy expressions for diatomic and monatomic gases. The
expressions differ because of the additional rotational degrees of freedom
for the diatomic molecules, which adds terms to the energy used in the
equipartition theorem. But if the gas is really hot, it is also possible to
excite wbrations in the diatomic molecules, resulting in two more terms
in the equation for the energy of a diatomic molecule: one for the kinetic
energy of the vibration and one for the potential energy of the vibrating
molecule. What would you expect for the relation between A Eiperm and
AT for such a hot diatomic gas?

A piston contains 0.65 moles of diatomic nitrogen gas (N3), with an initial
pressure and volume of 110kPa and 0.15L, respectively. The piston
compresses the gas adiabatically to a volume of 0.062L. Calculate the
pressure of the gas after this compression.

A piston contains 0.45mol of monatomic helium gas, with an initial
volume and temperature of 0.12L and 285K, respectively. The piston
expands the gas adiabatically to a volume of 0.31 L. Calculate the tem-
perature of the gas after this expansion.
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p
164.8 kPa -

100.0 kPa -

Figure 8.8: For problem 15.

15. A fixed amount of diatomic ideal gas goes through the cycle as shown in
Fig. 8.8.

A — B: adiabatic compression
B — C: constant-pressure expansion
C — A: cooling at constant volume

Fill in the chart below for the change in thermal energy, heat flow in,
and work done on the gas for each of the processes and for the complete
cycle. Show all work.

AEtherm (J) Qin (J> WOII (J)

A—B 115.2J

cycle
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p(kPa) 1
466 - B
300 A

adiabat

isotherm

100+

I I
2.00 6.00 V(L)

Figure 8.9: For problem 16.

16. 0.20 mol of diatomic ideal gas undergoes the processes shown in the p-V
diagram of Fig. 8.9. The table below has boxes for the change in thermal
energy of the gas, the heat added to the gas, and the work done on the
gas, all in joules. Energy values have already been entered in two of
the boxes. Fill in the remaining entries with values accurate to three
significant digits. Be sure to show your work for each entry.

AFE therm Qin Won

A— B 830 J

B—C —830 J

C— A
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Figure 8.10: For problem 17.

17. The p-V diagram in Fig. 8.10 shows a cyclic process for 2 moles of an
ideal monatomic gas.

(a) Determine the temperature of the gas at state A.

(b) Determine the heat flow into the gas during the process A—B.

()

(d) Is the work done on the system for the complete cycle positive,
negative or zero? (No calculation required.)

Determine the heat flow into the gas during the process B—C.



Chapter 9

Second Law of
Thermodynamics and
Entropy

In this chapter we will discuss one of the most significant developments in
the history of science — the development of a statistical theory of thermo-
dynamics. Here is the question: if a chunk of ice, or a glass of water, or
an air-filled balloon is composed of 10?2 or 10%* molecules, isn’t it neces-
sary to describe the dynamics of each individual molecule? To determine
the force on each molecule and solve Newton’s second law to figure out its
motion? The answer is no, thankfully. Instead, we can treat each of these
molecules as though they are behaving randomly, and recover all the results
of thermodynamics from a probabilistic treatment.

The importance of this statistical approach cannot be overstated. The
idea that we can treat thermodynamic systems probabilistically led to a
revolution in scientific thought that ranks up there with Newton’s develop-
ment of classical physics, Pasteur’s development of germ theory of disease,
Einstein’s theory of relativity, and the development of quantum mechanics
(which you'll see in PHYS 212).

We will introduce statistical mechanics by revisiting the basic phenomenon
of heat flow, the spontaneous thermal energy transfer from hotter objects to
colder objects. The direction of the heat flow is determined by what is known
as the second law of thermodynamics. We can derive the second law of ther-
modynamics from probability arguments; essentially, thermal energy flow is
dictated by moving from an improbable to a probable situation. Entropy is
introduced as a measure of probability. And along the way to understanding
the second law, we will provide a general definition of temperature.

185
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hot ’
metal

gets
cooler

Figure 9.1: A hot piece of metal is placed into cold water. Thermal energy is
transferred from the hot metal to the cold water until they are in
thermal equilibrium.

9.1 Heat Flow Revisited

Consider the following process, illustrated in Fig. 9.1: a hot piece of metal is
placed into a container holding cold water. As time passes, thermal energy
flows from the metal to the water, making the metal colder and the water
warmer. Eventually, the two are at the same temperature and no more
thermal energy is transferred. This is heat: the spontaneous thermal energy
transfer due to the temperature difference, as we identified in section 6.10.

In a heat flow scenario, such as this one, the first law of thermodynamics
states that energy is conserved, and so we must have

AEitherm,vvater = _AEtherm,metal . (9 1)

However, energy conservation would be equally well satisfied if the heat
flowed the other way. Imagine putting the hot metal into cold water and
finding that the metal becomes increasingly hotter while the water becomes
increasingly cooler, beginning to freeze. Absurd! This is never observed
to happen. And yet it would be perfectly consistent with the first law of
thermodynamics.

What this process illustrates is that there must be an additional law
of nature involved that determines the direction of heat flow. In a fit of
creativity, physicists decided to call this the second law of thermodynamics.
There are many equivalent ways to state the second law. We will begin with
the Clausius statement of the second law, since it is the most intuitive.

2ND LAw OF THERMODYNAMICS (CLAUSIUS):
Heat cannot flow spontaneously from a material at lower
temperature to a material at higher temperature.
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Let’s examine this. First, note that the law is, at this point, empirical,
which means it is a statement about the observed behavior of nature. The
second law rules out the absurd scenario whereby heat flowed from the cold
water to the hot metal. But, note that the second law makes no statement
about whether the heat will actually flow from the metal to the water.
According to the second law, this heat flow is allowed, but not required.
That is exactly what we want from a general law, since after all the metal
and the water may or may not be thermally coupled.

Temperature plays a crucial role in the second law, since the question
of whether heat is allowed to flow from A to B or instead from B to A
is answered by the temperatures T4 and Ts. Temperature plays the role
of nature’s traffic cop, enforcing thermodynamic “one-way streets.”! The
primary topic of this chapter is the explanation of why temperature plays
this role.

Another interesting aspect of the second law is the phenomenon of irre-
versibility. Many processes in nature are reversible. A movie of the flight
of a ball thrown straight up into the air, turning around and coming back
down, looks the same whether played forward or backward. This is because
Newton’s law are reversible as long as friction is negligible. But once heat
flows from the hot metal to the cold water, it will never spontaneously flow
back again. A movie of the process (with some thermometers used to make
the temperature visible) would look different played backward versus for-
ward. Physicists believe the second law is the origin of any irreversibility
observed in nature, which is to say, the second law of thermodynamics plays
a crucial role in determining the direction of time flow.

Interestingly, the second law is unique among laws of physics. Most laws
are simply inferred from the behavior of nature. We don’t know why energy
conservation happens; we just know it does. The second law is different
because we can essentially derive it. We know why it happens. It is ulti-
mately a statement about probability: thermal energy flows spontaneously
from hotter objects to colder objects because that brings the system to a
state with a more likely arrangement of energy.

The rest of this chapter is concerned with expanding our probabilistic
understanding of the second law and temperature.

9.2 Microstates, Macrostates, and Multiplicity

To explain how probabilities work in thermodynamics — and ultimately to
explain entropy and how it relates to the second law of thermodynamics
— it is necessary to discuss some fundamental concepts of probability. We
start with definitions of microstates and macrostates:

"However, nature needs no traffic court since its one-way streets, like its speed limit,
are self-enforcing.
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A macrostate is a specification of the macroscopic state of the
system. For example, the pressure, temperature, and number of
moles of an ideal gas would specify a macrostate.

A microstate is the detailed specification of the microscopic state
of the system. In the ideal gas example, the microstate would
be precise values for the position and velocity of every single
molecule.

A macrostate can have many microstates associated with it. In the ideal
gas example, there are many possible arrangements of the molecules that
are consistent with having, say, one mole of gas with atmospheric pressure
and room temperature. This brings us to multiplicity:

The multiplicity 2 of a macrostate is the number of microstates
associated with that macrostate.

Let’s explore these ideas with a specific example: a pair of six-sided dice,
one red and one green.? There are 36 possible outcomes of rolling these dice,
listed in Table 9.1, and the sum of the two dice can be any number between
two and twelve. Not every sum is equally probable, however. If you roll the
dice many times, you will notice you get a sum of seven much more often
than, say, a sum of twelve.

The 36 possible outcomes are the microstates. The red dice showing ‘5’
and the green die showing ‘3’ would be a particular microstate (labeled 5-3 in
Table 9.1). The sum of the dice, eight in this case, represents a macrostate.
Notice that there are many ways to roll a sum of eight; or stated another
way, there are multiple microstates associated with the macrostate ‘8. The
number of ways to roll an ‘8’ is the multiplicity €2. Looking at Table 9.1, we
see there are five different ways to roll an ‘8’, so the multiplicity 2 = 5.

The multiplicity of a macrostate is useful to know because it tells us
the probability of obtaining that particular macrostate. Each of the 36
microstates for a pair of dice is equally likely. The reason that a sum of
seven is a more likely outcome than a sum of twelve is not because 4-3 is
more likely than 6-6 (it’s not!), rather, there are more ways to roll a ‘7.’

Now let’s come back to physics. The macrostate of a collection of
molecules could be defined in terms of the number of particles and the
amount of energy FEiherm they have. A microstate would correspond to a
particular arrangement of the energy among the molecules. Since there are
many possible ways to arrange the energy among the molecules, there are
many microstates associated with this macrostate. The number of possible

2Having dice of the same color wouldn’t change anything. We just use different colors
to help label the dice.
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sum rolls (red die—green die) Q) probability
2 11 1 1/36
3 12 21 2 2/36 =1/18
4 13 22 31 3 3/36=1/12
5 1-4 2-3 32 4-1 4 4/36 =1/9
6 -5 24 33 42 51 5 5/36
7 -6 25 34 43 52 61 6 6/36=1/6
8 26 35 44 53 6-2 5 5/36
9 36 45 54 63 4 4/36=1/9
10 46 5-5 6-4 3 3/36=1/12
11 56 65 2 2/36 =1/18
12 66 1 1/36

Table 9.1: The 36 possible results from rolling a pair of dice (one red, one green).

ways to arrange the given amount of energy would then be the multiplicity
Q.

To go from multiplicity to probability we need one more piece of infor-
mation. In the case of the dice, each of the 36 possible outcomes was equally
likely, assuming that the dice were fair, returning each of the six values with
equal probability. Does this apply as well for our system of IV particles shar-
ing a total energy Fiherm! In general, we cannot prove this, but to make
progress we will assume that it is true.

THE FUNDAMENTAL ASSUMPTION OF STATISTICAL
MECHANICS:
All of a system’s accessible microstates are equally likely.

“Accessible microstates” here means simply those which are allowed by
energy conservation. The motivation for this assumption is that whatever
the specific dynamics are, however the molecules are colliding and sloshing
energy back and forth among each other, they eventually visit every possible
state allowed by energy conservation. So a sequence of snapshots of the sys-
tem would look like randomly selected examples of possible microstates. In
the end, nature has confirmed that starting with the fundamental assump-
tion leads to predictions that match experiments extremely well. Now we
shall see what the fundamental assumption buys us.

9.3 Einstein Solid

We now develop the ideas of the previous section in the context of a specific
model. The simplest model to work with, it turns out, is not the ball-
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spring model or the ideal gas, but rather a variation of the ball-spring solid
called the Einstein solid. Experiments on very cold metals showed that their
specific heats could fall well below the value 3R, suggesting something not
contained in the ball-spring model was occurring at low temperatures. Ein-
stein showed that a quantum mechanical version of the ball-spring model
could explain this result.®> To begin, notice that a three-dimensional oscilla-
tor, such as the molecule in the ball-spring model, can be written as a sum
of three independent, one-dimensional oscillators:

Epan = (3mu2 + mol + 3mo?) + (5kgpa® + 5kaypy® + 5kap2?)
= (gmug + gkope?) + (gmuj + ghopy?®) + (3mol + 3kep2®)  (9:2)

In the second grouping, each term in parentheses is an oscillator moving in
one particular direction and independent of the motion in the other per-
pendicular directions. Thus a set of N molecules in the ball-spring model
is equivalent to 3/N one-dimensional oscillators. In what follows we will be
working primarily with the one-dimensional oscillators so we let N represent
the number of oscillators instead of the number of molecules. The number
of molecules is then N/3.

Einstein proposed to treat the one-dimensional oscillators quantum me-
chanically, which should be appropriate when the temperature is low enough.
We will not discuss quantum mechanics here — that is a topic for PHYS
212 — but we will summarize the main results of interest to us. The energy
levels of the quantum harmonic oscillator are not continuous but rather
discrete (or quantized). This is illustrated in Fig. 9.2. At very low ener-
gies we cannot vary the oscillator energy up or down by arbitrarily small
amounts, but rather can only add energy in discrete chunks. Furthermore,
for the quantum harmonic oscillator, these energy levels are equally spaced.
Therefore we can write the energy level of an oscillator as

Eose = Eg + ne wheren=20,1, 2, 3, ... (9.3)

Here Ej is the lowest energy level possible, and we may increase the energy
by adding an integer number of “energy units” of size e.

Now consider a system of two oscillators, with a total energy of three
“energy units.” These oscillators bounce energy back and forth and so one of
the oscillators may have at a given instant anywhere from zero to all three
of the energy units. Let m; be the number of energy units that the first
oscillator has, and no the number of energy units for the second oscillator.
Specifying nq and ns determines a particular microstate. The total energy

3The complete description of very cold metals requires an additional modification,
worked out by a Dutch physicist named Peter Debye. We will not consider the Debye
theory here.
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Energy

Figure 9.2: The quantum harmonic oscillator has discrete energy levels, shown as
horizontal lines. The energy difference between successive levels is e.

of three units implies ny + no = 3, so the possible microstates, written as
(nq1,ne), are

(3,0), (2,1), (1,2), (0,3).
Evidently, the multiplicity of the macrostate with two oscillators and a total
of three energy units is {2 = 4. That is, there are four different microstates
with this total energy.

Example 9.1 Three oscillators, two energy units

Write down all the microstates for a system of three oscillators and a
total of two energy units, and determine the multiplicity.

Solution: For microstates written as (ni,ng,n3), we need to have
n1 + ng + ng = 2, so the possible microstates are

(2,0,0), (0,2,0), (0,0,2), (1,1,0), (1,0,1), (0,1,1),

and the multiplicity 2 = 6.

It is feasible to determine the multiplicity directly by counting the mi-
crostates when the number of oscillators and energy units is small. But this
becomes unwieldy very quickly as the number of oscillators and energy units
is increased. Fortunately, we can derive the general result for N oscillators
and ¢ total energy units, which is

(g+ N —1)!
Q== 9.4
q' (N —-1)! (94)
The factorial function is defined as n! = n(n—1)(n—2)---2-1. For example,
5l=5-4-3-2-1=120. A special case is the factorial of the number zero:
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by definition, 0! = 1. The meaning of n! is that it is the number of distinct
ways to order n objects. The number of ways to order zero objects is taken
to be 1.

Example 9.2 Checking the multiplicity formula.

Verify the Einstein solid multiplicity formula, Eq. (9.4), for the cases
of two oscillators with three energy units and three oscillators with
two energy units.

Solution: For two oscillators and three energy units (N = 2 and
¢ = 3) the multiplicity formula gives

3+2-1)! 4! 24
o Db 4 M (9.5)

(
0 = =
3(2—1) 3111 6-1

which matches our result above. For the second case, N = 3 and
q = 2, giving

2431 4 24

(
0= - _ o '
21(3—1)1 212 22 6 (9:6)

verifying the second case.

Factorials become very large very quickly. For example, 100! ~ 10157,
which is an amazingly large number. An Einstein solid with 100 oscillators
and 200 energy units has a multiplicity Q = 2.8 x 10%2. Now you can
appreciate having Eq. (9.4) to work with instead of counting all possible
microstates. And imagine how large the result would be for Avogadro’s
number of oscillators!

9.4 Coupled Einstein Solids

Our original goal was to understand heat flow. That is, why thermal energy
spontaneously goes from hotter objects to colder objects. To that end, we
will now consider two Einstein solids, solid A with a number N4 oscillators
and g4 energy units, and solid B with Ng oscillators and gp energy units.
If solids A and B are brought into thermal contact, then they will be able
to pass energy units back and forth while maintaining a fixed total gt =
ga + gp. But which way will the energy go, on average? And when will it
come to thermal equilibrium? Let us try to address these questions.
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qa 4B Q4 Op Qap
0 6 1 28 28
1 5 3 21 63
2 4 6 15 90
3 3 10 10 100
4 2 15 6 90
5 1 21 3 63
6 0 28 1 28

Table 9.2: Possible macrostates for system A and B sharing six units of energy,
with Ny = 3 and N = 3.

Once the two Einstein solids are thermally coupled and exchanging en-
ergy, A and B should be regarded as subsystems of the combined system.
For a particular division of energy among the two subsystems, we have a
multiplicity Q4 that depends on N4 and g4, and a multiplicity Qp that
depends on Np and ¢p.

How do we calculate the combined multiplicity of the system? If you
have three pairs of pants and five shirts, then you have 3 -5 = 15 possible
combinations you can make, at least in polite company. Similarly, subsystem
A may be in any of the number {24 microstates and subsystem B in any
of Qp microstates, so the number of paired microstates we can make is the
product Qap = Q40Qp. This is the combined multiplicity of the system.

Let’s consider a specific case. Let N4 = 3 and Ng = 3, and gt =
ga + qp = 6. The two systems may divide up the six energy units a variety
of ways, as shown in Table 9.2. For each choice, the multiplicities 24 and Q25
and the combined multiplicity Q245 are given. Note that the most probable
arrangement of energy, the one with the largest multiplicity, is the one with
three energy units in each subsystem. If subsystem A started with zero
energy units and subsystem B with six units, then simple random energy
exchanges would move the coupled systems toward the more probable state
with g4 = ¢p = 3. This is a clue about the origin of the second law.

From Table 9.2 we see that the most probable situation is only slightly
more probable than the other possibilities. This changes dramatically as the
system size is increased. In Fig. 9.3 we plot the combined multiplicity as a
function of ¢4 for various numbers of oscillators and energy units. As the fig-
ure shows, when the numbers become larger, say in the thousands, the multi-
plicity function becomes sharply peaked. Some particular division of energy
between the two subsystems is vastly, hugely, awesomely, mind-bogglingly
more probable? than all others. This we identify as the equilibrium division
of energy. Now imagine what occurs when you approach Avogadro’s number

“T.e., it isn’t just a little more probable, it is a lot more probable.
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Figure 9.3: Plots of the multiplicity as a function of g4 for a variety of system
sizes. Note that gp is determined by ¢4 + ¢ = ¢iot-

of energy units. The multiplicity function becomes completely sharp. There
is some particular division of the energy between subsystems A and B that
is ridiculously, overwhelmingly, staggeringly® more probable than any other.

Now we have the probabilistic origin of the second law. Subsystems
A and B, before they are thermally coupled, can be prepared with any
thermal energy we would like. We made the metal object hot and the water
cold before plunging the metal into the water. But once the subsystems
are thermally coupled, they will move from whatever division of energy
they started with toward the maximally probable arrangement of energy for
the coupled system. They are irresistibly led to it by essentially random
exchanges of energy between the subsystems. The energy transferred along
the way is what we had previously identified as heat.

To summarize:

The second law of thermodynamics is a result of a system pre-
pared in an improbable initial state then moving to a vastly more
probable final state.

”

S« . vastly, hugely, awesomely, mind-bogglingly, ...
cover it!

and that doesn’t even begin to
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This is an incredibly important result!!!! With this statement, we
don’t have to worry at all about the detailed, Newtonian mechanics of the
(many, many) individual molecules or atoms in a solid, liquid or gas. We
treat all the motion as though it is random and then simply figure out the
probabilities.

9.5 Entropy

Entropy is part of the title of the chapter; perhaps it is time we introduced
it. The fact is, we have already been discussing the entropy, because entropy
is simply the multiplicity cast into a more convenient form, by means of a
logarithm. We define entropy as

S = kplnQ. (9.7)

The factor of Boltzmann’s constant plays little role here, apart from giving
entropy units (which are J/K).% The logarithm is a monotonic function,
which means that the larger (2 gets, the larger S gets. So being the most
probable state is the same as being the highest entropy state. This is a really
important statement, so important that we will elevate it to box-dom:

Entropy is a measure of probability: the more probable a state,
the higher its entropy.

Entropy is often incorrectly described as a measure of the disorder of a
system. This is simply not true; entropy is measure of probability and prob-
ability only. It is true that higher entropy states are often more disordered
than lower-entropy states, but this is not always true; there are many ex-
amples of systems that become more ordered as their entropy increases.

We can now write the second law of thermodynamics rather concisely as
a statement of probability, given in the boxed statement at the end of the
previous section:

ASiota1 > 0. (Entropic version of 2nd law) (9.8)

Starting from some initial state that is not the maximum entropy state,
the combination of all our subsystems will exchange thermal energy and
move spontaneously toward the maximum entropy state. And for large
systems, it moves irreversibly: there is a negligibly small probability of
moving away from the maximum entropy state (think about the sharply
peaked multiplicity).

5By the way, Boltzmann was the one who realized that the second law had a proba-
bilistic origin, and Eq. (9.7) is engraved on his tombstone. Check it out if you're ever in
Vienna.
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Note that the entropic form of the second law refers to the total entropy
of a system, i.e., the total entropy cannot decrease. But the entropy of part
of a system can decrease. So, for instance, it is very possible to have a
chemical reaction where the stuff inside your beaker ends up with a lower
entropy, as long as there is a corresponding increase in entropy somewhere
else (most likely in the air around the beaker whose entropy increases when
heated up by heat flowing from the beaker).

We could have expressed all this with the multiplicity, so why take a
logarithm and call it entropy? There are three reasons. First, since multi-
plicities become very, very large for even modest sized systems, we find more
workable expressions if we use the logarithm. For example, in the previous
case of 100 oscillators with 200 energy units, we get an entropy of

299
kp=InQ=In(-—" =1 :
S/kp =In n<200!99!> 90, (9.9)

which is much nicer to manipulate and plot than 1032,
The second reason is that the combined entropy of two systems is simply
the sum,
Sap =84+ 55, (9.10)

which you will show in Problem 14. When we are trying to identify the
maximum entropy state, we can combine the contributions S4 and S from
subsystems A and B by simply adding them together (like we would for
energies). That will turn out to be handy now as we finally come to the
definition of temperature.

The third reason is historical: it so happens that entropy was defined
by Clausius a few years before Boltzmann developed a probabilistic theory
for thermodynamics. Clausius defined the quantity that he called entropy’
in terms of energy flow in a thermodynamical system (to be discussed in
the next chapter). He even stated the entropic form of the second law of
thermodynamics, though no one at the time understood that this is really
a statement of probability. So, taking the logarithm of multiplicity was
needed to keep the entropic statement of the second law consistent with
that proposed by Clausius.

9.6 The Definition of Temperature

As we discussed in Chapter 6, temperature is often defined in terms of the
thermal kinetic energy. Certainly thermal kinetic energy and temperature
are related, via the equipartition theorem, so it is a useful and convenient

"Clausius chose the word entropy partially after the Greek word trope which means
transformation and partially because he wanted a word that sounded similar to energy
since he defined entropy in terms of an energy flow.
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Entropy S

Etherm

Figure 9.4: Entropy as a function of thermal energy.

picture to have. But defining temperature this way leaves its most funda-
mental role — namely, that it is the traffic cop dictating which way thermal
energy will spontaneously flow — completely unexplained. In this section
we will introduce a definition of temperature that naturally explains its pres-
ence in the Clausius statement of the second law. Conveniently, this second
law temperature turns out to be the same temperature we know and love
from the ideal gas law, the equipartition theorem, and the ball-spring solid.

Let’s think of the entropy of a system as a function of its thermal energy.
Adding more thermal energy to a system gives more ways to distribute the
energy, and so increases the multiplicity. This means an increase in entropy,
so S should be an increasing function of Fiperm. A typical dependence of
entropy on FEiperm is shown in Fig. 9.4. Note that the entropy is increasing
with Fiperm, but also note that the rate of increase slows down with increas-
ing energy. That is, the slope is steadily decreasing as Eiperm increases. This
can be understood as a type of diminishing returns: systems with very low
FEiherm can gain a lot of multiplicity by adding energy. Once the thermal
energy is high, additional thermal energy has less impact on the entropy.

Now let’s couple two subsystems, A and B. The combined energy is
fixed, Eiotal = F 4 + Ep. Consequently, as system A gains energy, system
B loses energy, and vice-versa. In Fig. 9.5 we plot both S4 and Spg, but
notice that the Sp curve is flipped over left to right. This is because Ep = 0
occurs at the right side of the plot, where E,4 is at its maximum, and Ep
increases as you move to the left. The reason for plotting it this way is that
we can, for a particular choice of E 4, read off both S4(F4) and Sp(Ep).
Also shown on the plot is the combined entropy Siotal = S4 + SB.

Now imagine starting with a relatively small value of E4, where the
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Figure 9.5: Entropies of subsystems A and B, as well as the combined system
entropy Siotal, all plotted versus F 4.

heavy lines are drawn on the left. What would be the net effect on the
entropy if we were to take some energy from system B and give it system
A? The plot shows that Sp would decrease and S would increase. The
plot also shows that, since the S4 curve in this region is steeper than the
Sp curve, system A would gain more entropy than system B would lose.
In other words, Siota1 would increase. Therefore, the “force” of probability
pushing towards a (vastly) more probable state dictates that energy flows
from system B to system A.

What the previous analysis should make clear is that the question of
which way the energy will flow is determined by the magnitude of the slope
on an entropy versus energy graph. Whichever system, A or B, has the
steeper slope will be the one to receive the energy.

Let’s carry this analysis further. After some energy has flowed from A to
B, we find that E4 has increased to where the second set of heavy lines are
drawn. Here, the slopes of the S4 and Sp curves are equal in magnitude and
opposite in sign. Any entropy change of system A is canceled by the entropy
change of system B, so there is no longer entropy gained by increasing F 4
(or decreasing it). Thermal energy will no longer be transferred because we
are at the maximum combined entropy, which can be seen from the plot of
Stotal, and we have reached thermal equilibrium. Any additional transfer of
energy (in either direction) will result in a decrease in total entropy.

All this discussion leads to the notion that the slope dS/dFEiperm is direct-
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ing the thermal energy traffic. Whichever subsystem has the smaller slope
will give up energy to the subsystem which has the larger slope. Hence, we
define temperature as

1__4d5
T dEtherm ’

(9.11)

and our probability analysis becomes equivalent to the Clausius statement.

This definition, then, explains the role of temperature in the second law,
but does it match our previous notions of temperature? And what does it
mean intuitively? First, yes, it does match the ideal gas temperature, etc.
This can be shown by deriving the equipartition theorem from this definition
of temperature; all our previous uses for temperature (such as the ideal gas)
had their origin in the equipartition theorem.

As for an intuitive meaning, think of it this way: inverse temperature
(that is, 1/7T") is a measure of how much use a system has for energy. When a
system can find many ways to divide up the energy, then adding some energy
will increase S a lot. That is a low temperature system. A high temperature
system is one where diminishing returns has set in, and additional energy
does not result in a substantial entropy increase.

Finally, note that for large systems we can add some amount of en-
ergy without significantly changing the temperature (for example, adding
10 joules of thermal energy to a cup of water). In this case, we can approx-
imate Eq. (9.11) as

1 AS A FEiperm

e - or T~ ———.

T  APFherm AS
This is often a handy way to estimate temperature from entropy change
or vice-versa. IMPORTANT NOTE: use Eq. (9.12) only if AS and
AFEperm are small. If you are given the entropy S as a function of Ejperm,
you should be using Eq. (9.11).

(9.12)

Example 9.3 The Temperature of my Coffee

Adding 50 J of thermal energy to my coffee cup caused its entropy to
increase by an amount of 0.17J/K. Estimate the temperature of my
coffee.

Solution: According to Eq. (9.12) we have

AE’therm o 50J
AS  0.17J/K

That’s room temperature. Yuck!

T ~ — 204 K. (9.13)
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Problems
1. Consider an Einstein solid with three oscillators and four units of energy.

(a) Calculate the multiplicity for this macrostate.

(b) Write out the triplet for each possible microstate. For example, the
microstate where the first oscillator has all the units of energy can
be written as (4,0,0). Confirm that you find the correct number of
microstates.

. Calculate the multiplicity of an Einstein solid with 24 oscillators and 15

energy units.

. Suppose you roll a fair six-sided die three times in a row.

(a) Determine the probability of getting exactly the sequence 1-3-27

ow determine the probability of getting any other particular se-
b) Now determine th bability of getti th ticul
quence (hint: no calculation necessary).

(c) What is the probability of rolling a sum of 67

. For two Einstein solids with N4 = 3 and Np = 3 and six energy units,

how many times more probable is the macrostate with equally shared
energy than the macrostate where system A has all the energy? Use
Table 9.2.

. Is it really true that the entropy of an isolated system consisting of two

Einstein solids never decreases? Consider a pair of very small solids.
Explain why this statement is more accurate for large systems than for
small systems.

. A large object’s entropy is observed to increase by 0.15 J/K when we add

45 J of thermal energy. Assume that this causes a negligible increase in
the temperature of the object. Determine the approximate temperature
of the object.

The idea of “diminishing returns” says that while the entropy does
increase with increasing thermal energy, the slope is decreasing (see
Fig. 9.4). The Einstein solid multiplicity, like most materials, shows
this behavior. Here is how to see it:

(a) For an Einstein solid with 10 oscillators and 5 energy units, calculate
how much the entropy increases, i.e. AS, if you add one more energy
unit (you may leave your answer in terms of kp).
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(b) Now consider an Einstein solid with 10 oscillators and 15 energy
units, and calculate how much the entropy increases if you add one
more energy unit.

(¢) Do your answers to (a) and (b) confirm the diminishing returns?
Explain why.

8. For two Einstein solids A and B, the entropy as a function of thermal
energy is given by

Sa =kp400In(E4/300)  Sp = kg 1001n(Ep/800)

where F4 and Ep are the thermal energies of systems A and B. If the
two solids are brought to thermal equilibrium, what relation, if any, can
be made between the final energies E4 ; and Ep f?

9. Consider a very strange system whose multiplicity is 24 = 1 regardless
of how much energy it has. Imagine starting this system with some
amount of energy and bringing it into thermal contact with system B,
an Einstein solid.

(a) In which direction will the energy flow, or will no energy flow?

(b) What can you say about the energies of the final state? For example,
will they be equal? If they are unequal, which is larger? Is there
anything more you can conclude?

10. A substance has entropy S = ¢v/Fiherm, Where ¢ is some constant. Use
the definition of temperature to find Fiperm as a function of 7T'.

11. Consider two Einstein solids with N4 = 3 and Np = 3 and eight energy
units.

(a) Make a table like Table 9.2. Note that many of the multiplicities you
will need are already in Table 9.2, so there is no need to re-calculate
everything.

(b) How many times more probable is the macrostate with equally
shared energy than the macrostate where system A has all the en-

ergy?
12. An Einstein solid has four oscillators and three units of energy.

(a) Calculate the multiplicity of the solid.

(b) Identify all the possible microstates using the parenthesis notation
of Example 1.
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13. System A and system B are both large. For system A, adding 250 J of
thermal energy causes an entropy increase of 0.80J/K. For system B,
adding 250 J of thermal energy causes an entropy increase of 0.60 J/K.

(a)

(b)

Without mentioning temperature, use probability arguments to de-
termine which way thermal energy will flow when systems A and B
are thermally coupled.

Estimate the temperature of each object and check that your result
is consistent with part (a).

14. Show that Sap = S + Sp follows from the definition of entropy.

15. Entropy applies to more than just heat flow. We can use entropy and
the second law of thermodynamics to discuss movement of air in a room.

(a)

()
(d)

(e)

Consider a room with only 100 gas molecules. Theoretically, the
gas molecules can move anywhere in the room. Calculate the prob-
ability that all 100 of the molecules will be found on one particular
side of the room.

Now, consider a real room with a realistic amount of gas in it —
let’s say that there are 1026 gas molecules in the room. Calculate
the probability that all of these gas molecules will be found in one
particular side of the room. (Note: the probability is so small that
your calculator or computer might simply give “0” for the answer.)

Is it reasonable to say that you will “never” find all the air in one
side of the room?

Now, write a couple of sentences explaining why it is (from a prob-
ability perspective) that when a perfume bottle is opened, the scent
of the perfume will spread throughout the room.

After the perfume smell has spread throughout the room, would
you expect all of the perfume molecules to go back into the bottle?
Discuss this using the entropic form of the second law of thermo-
dynamics.
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16. The graphs in the figure below give plots of entropy S vs. Fiperm for
two different solids, A and B. Solid A starts with indicated energy
and entropy S4, and Solid B starts with Eg and Sg. When Solid A
has energy Ej4, the slope of the entropy vs. energy curve is dS4/dE =
0.2K~!, and when Solid B has energy Ep, the slope of the entropy vs.
energy curve is dSp/dE = 0.4K~ 1.

Entropy

Solid A Solid B

SA T

Entropy

EA EB
Thermal Energy Thermal Energy

Figure 9.6: Figure for Problem 16

The two solids are brought into thermal contact with each other so that
energy can flow between them.

(a)
(b)

()

Which way will the energy flow: from A to B, from B to A, or will
no energy flow? Give qualitative reasoning to support your answer.

Now let’s get quantitative. Calculate the approximate entropy
changes AS4 and ASp, and ASiota if 3J of energy flow between
the two solids in the direction that you chose in part (a).

By what factor has the multiplicity for the total system increased
from this energy transfer? In other words, calculate the ratio of
multiplicities Qagter /Qbefore-

Note: The answer you get will be a ridiculously, mind-boggling,
impossible-to-put-into-words-just-how-huge-it-really-is number that
you will not be able to calculate — you’ll have to express it as
gsomething really big T oive you and idea of just how large this num-
ber is, if you were to write it as a digit followed by a bunch of zeros,
and if each digit were 5 mm wide, the number would fill up several
light years.

Explain in your own words why heat flows in this system when the
two solids are brought into contact. Don’t use the words “entropy”
or “second law” but rather explain it based on probabilities.
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17. The graphs in the figure below give plots of entropy S vs. Fiperm for
two different solids, A and B. Solid A starts with indicated energy F
and entropy S4, and Solid B starts with Eg and Sg. When Solid A
has energy Ej4, the slope of the entropy vs. energy curve is dS/dE =
0.5K~!, and when Solid B has energy Ep, the slope of the entropy vs.
energy curve is dSp/dE = 0.1 K~ 1.

Entropy

Solid A Solid B
=
)
=
=
e ——
Sp-d- - |
E/l EB
Thermal Energy Thermal Energy

The

Figure 9.7: Figure for Problem 17

two solids are brought into thermal contact with each other so that

energy can flow between them.

(a)
(b)

()

Which way will the energy flow: from A to B, from B to A, or will
no energy flow? Give qualitative reasoning to support your answer.

Now let’s get quantitative. Calculate the approximate entropy
changes AS4 and ASp, and ASioa if 2J of energy flow between
the two solids in the direction that you chose in part (a).

By what factor has the multiplicity for the total system increased
from this energy transfer? In other words, calculate the ratio of
multiplicities Qafter /before-

Note: The answer you get will be a ridiculously, mind-boggling,
impossible-to-put-into-words-just-how-huge-it-really-is number that
you will not be able to calculate — you’ll have to express it as
egsomething really big T oive you and idea of just how large this num-
ber is, if you were to write it as a digit followed by a bunch of zeros,
and if each digit were 5 mm wide, the number would fill up several
light years.

Explain in your own words why heat flows in this system when the
two solids are brought into contact. Don’t use the words “entropy”
or “second law” but rather explain it based on probabilities.
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18. System A and System B are brought into thermal contact when the
energy in A is F4 = 1000J and the energy in B is Eg = 1100J. Using
the table below, listing energies and corresponding entropies of the two
systems, determine whether heat will flow from A to B, or from B to A.
Show all your work.

Ex(J) | Eg (J) | Sa (J/K) | S (J/K)

950 1150 6.76 10.34
975 1125 6.84 10.21
1000 | 1100 6.93 10.08
1025 1075 7.02 9.95

1050 1050 7.10 9.82
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Chapter 10

Heat Engines

10.1 Introduction

Mechanical energy is essential for our every day life: cars move along roads
and highways, electrons flow through semiconductor devices in our iPods,
and blood flows through our arteries. Mechanical energy makes matter do
things, and converting other forms of energy to mechanical energy is an
essential technological challenge. Batteries and our bodies convert chemical
bond energy into mechanical energy. And nuclear reactors convert mass into
mechanical energy.

But we have seen that there is a considerable amount of energy contained
in the disorganized thermal motion of the molecules and the disorganized
pushes and pulls on their molecular neighbors. Harnessing some of this
thermal energy and converting it to organized mechanical energy provides
yet another source of mechanical energy. But just how do we go about doing
this?

It is tempting to imagine some kind of molecular referee who could
convince the all the molecules in a material to align their motion. If the
molecules in your textbook could do this, your book would zip away from
you at many hundreds of miles per hour, so it would be a very useful trick.
However, no such microscopic referee exists. In fact, this trick would violate
the second law of thermodynamics, moving from a more probable to a less
probable arrangement of velocities.!

Nevertheless, it is still possible to convert some (but not all) thermal
energy to mechanical energy. That is, we can design devices to do this while
still satisfying the second law. These devices are called heat engines, and
they played an essential role in the industrial revolution and continue to
play a vital role in modern society.

L This microscopic referee was first pondered by Maxwell, and is commonly referred
to as Maxwell’s Demon. He showed that the referee could make heat flow from a colder
object to a hotter one — in contradiction to the second law, which of course is impossible.

207
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In this chapter we will study the basic physics behind heat engines. We
will discuss how the basic principle of a heat engine can be understood
using the arguments of statistics and entropy discussed in Chapter 9. We
will also describe the basic gas cycles that many such engines employ. As
a fundamental starting point, any heat engine must satisfy the second law
of thermodynamics, ASiota1 > 0, so we begin with developing a convenient
and powerful relationship between entropy change and heat.

10.2 Entropy Change and Heat

As discussed in the previous chapter, entropy is a measure of probability;
specifically, it is Boltzmann’s constant times the logarithm of the multi-
plicity. While we can work with the multiplicity and take logarithms for
simple enough models, we often want to know the entropy (actually, the
entropy change AS) for more complicated situations without having to sort
out exactly what is going on with the multiplicity.

In many situations it is possible to do this. We begin with our result
from the previous chapter:

1 dsS
- = — 10.1
T dEtherm ’ ( )

which we can rewrite as a relation between a small (infinitesimal) entropy
change dS and a small thermal energy change dFEiherm,

_ dEtherm

s T

(W =0). (10.2)
In our development of the definition of temperature, we only considered
energy transfers between subsystems A and B that happened spontaneously,
due to the increased probability associated with the new energy distribution.
In other words, we only allowed for thermal energy changes due to heat and
not due to work. Hence the W = 0 label in Eq. (10.2).
Recall that the first law of thermodynamics, for small amounts of heat
and work, says
dEtherm = dQ + dW. (10.3)

If no work is being done, dFinerm 1S the same thing as d@Q): the thermal
energy has changed by however much heat flow has occurred. Thus, we
could equally well write Eq. (10.2) with a d@ in the numerator.

So the question is, what is the appropriate generalization of Eq. (10.2) to
cases where there is both heat flow and work done? Should the numerator
still be dFEiherm, or should it be d@Q, or something else entirely?

The answer is: it depends. If the work is being done slowly enough that
the system remains in thermal equilibrium (which means that the basic
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hypothesis of all microstates being equally likely is at all times still true),
then we have a clear answer: the numerator should be d@, and so
dQ
s = - (whether or not W = 0). (10.4)
A good rule of thumb for “slow enough” is that whatever moving object is
doing the work should move slower than the speed of sound. In many cases
this isn’t much of a limitation. For our purposes, we will assume that we
remain in equilibrium for all the processes we consider.?

But you may be wondering why doing work (slowly enough) doesn’t
affect the entropy, that is, AS only depends on the heat flow. The full
explanation is beyond the scope of this course, but here is the flavor of it.
We could do work on a solid by squeezing it, and this would certainly increase
the thermal energy. The Einstein solid of the previous chapter would respond
to the squeezing by having an increased energy spacing €, but not by having
more “energy units.” So the multiplicity wouldn’t change, even though the
thermal energy has gone up. And of course if the multiplicity doesn’t change,
the entropy doesn’t change.

In practical terms, Eq. (10.4) is a very handy tool for calculating entropy
changes. Of course, we usually have more than a small amount of heat flow,
so we will need to use calculus to add up the net entropy change:

B B dQ
AS =Sp—S)= / s = / T (equilibrium processes) (10.5)
A A

Often we are considering constant temperature situations, and then this
result simplifies even further:

AS = ;/dQ = % (constant temperature) (10.6)

The sign of @ is important here! When @ is positive, AS is positive, and
when @ is negative, AS is negative. Or to put it another way: heat flow
in increases the entropy, and heat flow out decreases the entropy. Do not
forget this! The second law is commonly misunderstood to say that all
entropies must always increase. This is simply not true. The second law
only tell us the total entropy must increase.

There are three common situations where the temperature is constant,
even though heat is flowing in or out of the system.

o for an isothermal process — isothermal expansion or contraction of a
gas is, by definition, at constant temperature (iso = “equal”, thermal
= “temperature”).

2When this isn’t the case, and the system goes out of equilibrium, we do not have a
general expression for the change in entropy. This is an active area of research today!
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e during a phase change — the latent heat at a phase transition (e.g.,

melting/solidifying or vaporizing/condensing) keeps the temperature
constant.

e for a thermal reservoir — if a system is very large, modest amounts

of heat flow will not affect the temperature. For example, dumping a
cup of coffee into the ocean will not change the ocean’s temperature
measurably.

Example 10.1 Entropy Change of Melting Ice

Consider an 18 g ice cube at 0° C. Heat flows in until is has changed
phase to 0° C water. The water molecules are now free to wander,
which increases their number of possible microstates. How much has
the entropy increased?

Solution: Since the molar mass of H2O is 18 g, our ice cube contains
one mole. Thus the heat required to melt it is (via Table 7.3)

Q =nLy = 1mol-6.01kJ/mol = 6010J. (10.7)

Now we can find the entropy change

B . Q _6010J
AS = Syater = Sice = 7 = g = 220J/K. (10.8)

Note that we have to use Kelvin for this to work.

In some cases, however, T' is changing while the heat flows. In this case

we must evaluate some kind of integral to find AS. We will restrict ourselves
to the cases where no work is being done and there is no phase change (i.e.,
nothing melting, solidifying, condensing or vaporizing). That is, heat is
flowing in or out of a solid or liquid, whose volumes are essentially constant.
In this case,

dQ = dEperm = nC dT (10.9)

that is, we can relate the small heat flow to a small temperature change.
Putting this into our integral expression gives

B dQ s nCdT
AS:/ — = 10.10
T b T ( )
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Since the specific heat usually is nearly constant with respect to temperature,
we may bring it outside of the integral:

Ts grT

AS =nC
7, T

=nC(lnTp —InT4) =nCIn(Tp/T4). (10.11)

Note that when the temperature increases, AS is positive, while when the
temperature decreases, AS is negative, since the natural log of a number
less than one is negative.

Example 10.2 Entropy Change from Heating Water

Let’s pick up with that 18 g of 0° C water, and now add heat until
it has become 100° C water (but not yet started to boil). How much
does the entropy increase?

Solution: We have one mole of water, and we get the molar spe-
cific heat of water from Table 7.1. We need to use Kelvin for our
temperature units, so

373K
AS =nCIn(Ty/T;) = 1mol - 75.3 J/mol-K - In (273K>

= 23.5J/K (10.12)

Notice in this case we didn’t need to calculate the amount of heat flow
involved.

One final special case in which entropy changes are easy to calculate is
for a cyclic process, i.e., a process where the system (or part of the system)
ends up in the same state that it started in. In this case,

ASeyctic = 0 (cyclic processes) (10.13)

10.3 Second Law and Heat Flow

Our new relatively simple relation between heat flow and entropy change
can be directly brought back to the second law. Recall the Clausius state-
ment of the second law, that heat can only spontaneously flow from higher
temperature to lower temperature. Suppose we have a pair of bricks A and
B with temperatures T4 = 400K and T = 300 K. We bring the bricks into
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thermal contact and let 20 J of heat flow from the higher temperature brick
to the lower temperature brick. This is a small enough amount of energy
that the temperature of the bricks is essentially unchanged (they are act-
ing as reservoirs), so we can use the constant temperature approximation,
Eq. (10.6), for entropy changes.

Then the total entropy change is

ASigra = ASs + ASy = 24 98

Th 1B

—20J +4+20J
=——+ —— =—-0.000J/K+0.067J/K
400 K + 300K / + /

=0.017 J/K. (10.14)

Notice the signs of Q4 and Qp: since heat was flowing out of brick A, Q4 is
negative. We find that even though the entropy of brick A went down, the
total entropy of bricks A and B went up, as required by the second law.

If we had tried, as a thought experiment, to send the 20J in the other
direction, this would have changed all the signs, and we would be confronted
with a ASiota1 < 0, violating the second law.

More generally, for some amount ) flowing from reservoir A to reservoir
B, we have

-Q Q 1 1
AS =——+ "= — - 10.15
total TA TB Q TB TA ( )
Since the second law requires ASioa1 > 0, we see that T4 must be greater
than T'g for this to happen. And so we have recovered the Clausius statement
of the second law, i.e., that heat can flow spontaneously only from higher to

lower temperature.

10.4 Heat Engines

Let’s return to the question at the beginning of the chapter: how can we
harness some of the thermal energy of some object and convert it to mechan-
ical energy? We know how to spontaneously decrease the thermal energy
of an object: put it into contact with something at a lower temperature.
So we can extract thermal energy as heat, but that doesn’t yet give us me-
chanical energy, which is what we are after. We need somehow to transform
heat to work: start with the spontaneous energy flow due to a temperature
difference, but convert it to something that will turn a crank or generate
electricity or lift a weight. Once we have energy available in the form of
work, we can use it to manipulate mechanical energy however we like.

Can we simply convert all the heat to work? The first law of thermo-
dynamics, a.k.a. energy conservation, would have no problem with this.
This hypothetical engine is illustrated in Fig. 10.1. In both scenarios in
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Figure 10.1: On the left, heat flows from a hot reservoir at temperature Ty to
a cold reservoir at T¢. On the right, how the diagram would be
altered if we could convert the heat @) into work W.

this figure, the hot reservoir is giving off heat (), and so has negative en-
tropy change. Since we are dealing with a reservoir, we use the constant
temperature approximation, Eq. (10.6), to find

1ol

ASy =
H To

(10.16)

(We use absolute value bars so that there no confusion about the sign of Q).
For the figure on the left, this negative entropy change is allowed, because it
is offset by the positive entropy change of the cold reservoir, ASc = |Q|/T¢.
But for the figure on the right, there is no compensating positive entropy
change. And so if we could convert all heat to work, then

AStotal = ASH = —@ <0 (1017)
Ty
which violates the second law! So we cannot do this.

But, you may have noticed that we could still satisfy the second law
in the previous example even if we didn’t dump all of the heat @ into the
cold reservoir. Suppose we only dumped enough heat to make the positive
ASc large enough to compensate for the negative ASy. That would leave
a little energy that we could conceivably convert to work, while satisfying
the second law (and the first, for that matter).

A schematic diagram of this process — called an engine diagram — is
shown in Fig. 10.2. An amount of heat @ is pulled from the hot reservoir,
and an amount ()¢ is dumped into the cold reservoir. In between, some de-
vice which we’ll call the working substance intercepts this heat and produces
work. For now, don’t worry about how this might actually be accomplished;
we’ll discuss that in detail in the next section. Instead, focus on the big
picture: such a device will be consistent with the first law as long as we
conserve energy. Looking at the arrows for energy flow, this tells us

Qu| = |Qc| + [W]. (first law) (10.18)
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Ty

Qu
working substance

Qc
Tc

Figure 10.2: Engine diagram.

Again, we have used absolute value bars everywhere to avoid ambiguity
about whether the symbol Q) i represent the heat flow out of the hot reservoir
(in which case it is a negative value), or the heat flow in to the work substance
(in which case it is positive).

And continuing with the big picture: such a device will be consistent with
the second law as long as the total entropy doesn’t decrease. So where do
entropy changes happen? Certainly in the reservoirs. The hot reservoir has
an entropy decrease (since heat leaves the reservoir) and the cold reservoir
has an entropy increase (since heat is added to the reservoir). But what
about the working substance? This gets at an essential point: in order
to be a heat engine, the working substance is not a source of energy. It’s
not a battery stuck in between the reservoirs, or anything else consuming
chemical energy. Rather, it must be returned back to the same state it
started from, so the process can be repeated indefinitely. But if this is the
case, if the working substance undergoes some cyclic process, then we can
use Eq. (10.13), which tells us ASys. = 0, since the final and initial states
are the same.

And now we can do the complete entropy accounting;:

0
ASiotal = ASH + ASc + XS5 = _|Qul + 1Qc >0 (second law)

Ty | Tc
(10.19)

One way to think of Eq. (10.19) is that it gives a lower bound on how
much heat we have to dump to the cold reservoir:

T,
|Qc| > ﬁIQHI. (10.20)

That lower bound isn’t zero, so we must dump some heat. This is an
important result: any heat engine must dump some of its heat into a cold
reservoir. It is impossible to turn all heat into usable mechanical energy.
But the good news is that the lower bound on the dumped heat |Q¢|
is smaller than |Qg|, so we do get to “skim off” some of the energy and
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generate some work. Notice that the bound on how much heat we have to
dump becomes smaller for very large Ty or small T. Evidently, the more
extreme the difference in temperature between the reservoir, the more work
we will be able to extract.

Let’s quantify that. Let’s introduce a dimensionless quantity called the
efficiency, which is simply the fraction of heat pulled out of the hot reservoir
that we are able to convert to work:

W
e= L (10.21)
Qul
From the first law we know |W| = |Qg| — |Qc¢|, so we can substitute this in
and write the efficiency equivalently as
e 1Qul=1Qc] _ _ |Qc] (10.22)

1QH]| Qul’

Obviously, the efficiency can’t ever be greater than 1; that would correspond
to an engine that produces more mechanical energy than the amount of heat
that flows into it, and that would violate the first law of thermodynamics.
But since |Q¢| can never be zero in a real engine — we must always dump
some heat — the efficiency can never reach 1. That would violate the second
law of thermodynamics. We’ll say more about this in a bit, after we have
done a simple example using efficiency.

Example 10.3 A simple engine problem
An engine is described by the engine diagram in Fig. 10.3. Determine

the work output by this engine and the efficiency of the engine.

Solution: We can straightforwardly find the work done by this engine
using the first law of thermodynamics, i.e., energy conservation. The

750 K

25017

1757

275 K

Figure 10.3: Diagram for Example 3
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energy going into the working substance is equal to the energy going
out of the working substance, so

|Qu| = [Qc| + W] (10.23)

and
[W| =|Qu|—|Qc| =250] — 175J =75 J. (10.24)

Then from the definition of efficiency, Eq. (10.21), we have

Wl 75]
=—=——=/0.301|
= iQu] ~ 200 030

Okay, so we have a definition for efficiency, which can never be greater
than one (that would violate the first law of thermodynamics). But it can
never be equal to 1 either.®> The maximum value of ¢ corresponds to |Qc|
being at its minimum (since it is being subtracted). Evidently,

Qcunl _ | Te/T)Qul | Te o0

Q| Qnl Th
Warning: do not confuse this result for the maximum efficiency €,,x with the
similar looking expression Eq. (10.22) for efficiency € in general. Also, this
is only valid if heat is drawn from and dumped into isothermal reservoirs.
VERY IMPORTANT NOTE: It is worth keeping in mind that Eq. (10.25)
for the maximum efficiency is a special case formula that is ONLY valid
for an engine operating between two thermal reservoirs. In other words,
Eq. (10.25) will give you a VERY WRONG, HIDEOUSLY INCOR-
RECT* answer for any other engine (i.e., if not operating between two
isothermal reservoirs). A more general approach to finding the most effi-
cient engine is just to use the first and second laws of thermodynamics. The
first law just says balance the energy in and the energy out, and the second
law says

€max = 1 —

ASiotal = 0 (maximum efficiency) (10.26)

Ultimately, that’s the one equation you need to remember to solve problems
involving a maximally efficient engine. (And, in fact, starting with “maxi-
mum efficiency — AS;q = 0 will give you Eq. (10.25) in the case with two
thermal reservoirs.)

Let’s consider some examples:

3This is important: if you ever calculate an efficiency equal to or greater than one,
then it is wrong.

4One of the most common mistakes that students make in PHYS 211 is to use
Eq. (10.25) for a problem that doesn’t involve two isothermal reservoirs, resulting in
anguish, despair and significant point deductions on exams.
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Example 10.4 Automobile Efficiency

The internal combustion engine of an automobile is a heat engine.
Yes, there is gas being consumed, but that’s being burned to provide
the high temperature of the hot reservoir. From there on, the engine
functions as a heat engine.

The hot reservoir is about 820° C and the cold reservoir is almost
air temperature, but typically more like 70° C. Burning a gallon of
gasoline provides about 120 MJ of heat. What is the upper limit on
how much work can be extracted from a gallon of gas, and how much
heat must be dumped?

Solution: The moment you see the words “upper limit” (or similar
language), then you can pull out the second law of thermodynamics:
ASiotar = 0. For this problem, ASiota = ASy + ASc, since the
reservoirs are the only parts of this system whose entropy changes.

To calculate AS for the reservoirs, we need to convert the tempera-
tures to Kelvin, so Ty = 820 + 273 = 1093 K and T = 70 + 273 =
343 K. The entropy change of the hot reservoir is

_ —l@Qm| ~ 120x10°J

ASH Ty 1093 K

= —-1.10 x 10° J/K (10.27)

Therefore, since ASiota1 = 0, it follows that ASc must be positive by
at least this amount.

ASC min = |62<:;an| =1.10 x 10° J/K (10.28)
C

SO
|QCmin| = 343K - 1.10 x 10° J/K = [37.7 M.J. (10.29)

We get the maximum work by subtracting this from |Qg|:

|[Winax| = 120 — 37.7 = | 82 MJ. (10.30)

In reality, the work output is only about 1/3 of this amount, due to
(i) design choices to get the work out faster, i.e. to get more power,
(ii) friction, and (iii) imperfect combustion of the fuel.

We could have solved the previous example by using the equation for
€max for engines with thermal reservoirs (although there was no need to do
s0). The following is an example where the €nax approach would not work;
i.e., you must start from the second law of thermodynamics:
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Example 10.5 A Two-Brick Heat Engine

A hot brick initially at temperature T = 400K is used as the source
for a heat engine. An equal sized cold brick made of the same mate-
rial, initially at temperature T¢ = 300K, is used to dump the waste
heat. As the heat flows, the two bricks come to thermal equilibrium.
Assuming the heat engine was maximally efficient, what is the final
temperature?

Solution: You might think the final temperature should just be
350 K, but that would be true only if we didn’t intercept any of the
heat and convert it to work.

There is a lot we aren’t given. We don’t know the amounts or the com-
position of the bricks, but we know they are identical. The hotter brick
is going to cool from 400K down to some T}, so its entropy change
will be ASy = nC'In(Tf/400), which is negative since T';/400 < 1.
The colder brick will warm from 300K to T, so its entropy change
will be ASc = nC'In(7Tt/300). For maximum efficiency, then,

— Ty Ty
A =A + ASc = | + In{ =) =0. (10.31
Stotal SH Sc =nC1n (400) nC'In (30()) 0. (10.31)

The nC factors divide out, and we get
InTy —In400 +InTy —1In300 = 0 (10.32)
and so
2InTy = In(400-300) =  T7 =400 - 300

= [Ty =3464K.| (10.33)

We see that the bricks end up slightly cooler than 350 K, which makes
sense since we skimmed off some of the energy as it was flowing from
hot to cold.

10.5 Gas Cycles for Heat Engines

We have made the case that skimming off some heat flow and generating
work is possible, that is, consistent with energy conservation and the second
law. But how do we actually make a heat engine? We need to find some
working substance that can take in heat, do work, and dump heat. We do
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Figure 10.4: Caption for gas-piston figure

not have to look very far: an ideal gas will do the job nicely. In fact, gases
are the most commonly used substance in heat engines today.

Consider a gas enclosed in a cylinder with a movable piston, as shown
in Fig. 10.4. Recall that the work done by a gas is given by

B
Wy = / pdV, (10.34)
A

so the gas can do work if we let the piston expand. We can put heat into the
gas by bringing it into contact with something at a higher temperature, and
we can dump heat out of the gas by bringing it into contact with something
at a lower temperature. To be useful, we will want to complete a full cycle,
to bring the gas back to its starting point. This means contracting the
piston at some point in the cycle, which will cost work (i.e., work is done on
the piston, or work done by the piston is negative). But part of the cycle
will involve an expansion, and that produces positive work by the piston.
Overall, we can get work out of the process (i.e., the net work by the piston
is positive) if the expansion happens with higher pressure (so more force)
than the contraction.

A typical cycle is illustrated in Fig. 10.4. Notice that the expansion
happens at higher pressure than the compression, leading to a net work
being done by the gas. These gas cylinders are often paired up, as in an
automobile, so that the expansion of one cylinder causes the compression of
the other cylinder, with power left to spare.

To quantify the cyclic gas process, it is useful to plot it on a p-V diagram.
One such cyclic process is illustrated in Fig. 10.5, which is a sequence of
constant pressure and constant volume processes that leads to a rectangular
cycle on the p-V diagram. Let’s analyze this case in some detail, starting
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Figure 10.5: Cyclic process made up of constant pressure and constant volume
processes.

with a calculation of the net work for the whole cycle.
The constant volume steps do no work, while for constant pressure,
Wiy = pAV. Adding this up around the whole cycle gives
chcle =Wi+ Wy + W3+ Wy
=0+ 200kPa(+80L) + 0 + 60 kPa(—80L) = 140 - 80 kPa-L
=11.2kJ (10.35)
Notice that the work done in the cycle is just the area of the enclosed
rectangle, which is true for any cycle.
Now let’s figure out what |Qp| and |Q¢| are. For this we will need to
know whether the gas is monatomic or diatomic. Let’s assume the gas is

diatomic, so f =5 and v = 1.4. For the constant volume processes (steps 1
and 3 in Fig. 10.5) there is no work done by the gas, so the first law says

Q = AEherm + 0 = 2A(pV) = S5V Ap, (10.36)

where we’ve used the fact that V' is a constant in the last step. Now we can
calculate the heat flow into the gas for steps 1 and 3:

Q1 =5-20L- (200kPa — 60kPa) = 7.0kJ
Q3 =5-100L - (60kPa — 200kPa) = —35.0kJ. (10.37)

For a constant pressure process (steps 2 and 4 in Fig. 10.5) the work is p AV
and so the first law says

Q = AEherm + Why = 3 - A(pV) + pAV = I pAV. (10.38)

where we’ve used the fact that p is a constant in the last step. Now we can
compute

Q2=
Q4

.200kPa - (100L — 20L) = 56.0kJ
.60kPa- (20L — 100L) = —16.8kJ (10.39)

[SIENENIEN
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Figure 10.6: Otto cycle.

We have calculated the heat flow into the gas for each step. Now we can
identify Qp as coming from all the steps with positive (), where heat really
does flow in. In our example, this would be steps 1 and 2. In contrast, Q¢
comes from all the steps with negative @), where heat is actually flowing out
of the gas, which is steps 3 and 4 for our example. So we can calculate

Qrl = Q1+ Q2 =7+56=63.0k]
Qc| = |Qs] + Q4| = 35+ 16.8 = 51.8kJ. (10.40)

We can check our calculation, since we have already computed the work in
Eq. (10.35):

W] =|Qu| - |Qc| = 63.0—51.8=11.2k] / (10.41)

And finally we can compute the efficiency,

W] 112
e= —=——=0.178. 10.42
Qul ~ 63.0 (10.42)

This rectangular gas cycle engine is not actually practical. Automobiles
use instead something called the Otto cycle, which is a sequence of constant
volume and adiabatic processes, as illustrated in Fig. 10.6.

The heat for the constant volume steps is again given by

Q = AEerm = gVAp (constant volume) (10.43)

which is positive when the pressure increases and negative when it decreases.
And now for the nice part: by definition there is no heat flow during either
of the adiabatic steps, so these constant volume processes give Qg and Q¢
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Figure 10.7: A refrigerator diagram, made by reversing all the arrows on a heat
engine diagram. Note that the working substance cycle is now coun-
terclockwise instead of clockwise.

as labeled in Fig.10.6. In the homework problems you will work out the
details of the Otto cycle.

The adiabats are exactly what makes this a more practical engine. The
adiabatic expansion and compression steps happen very quickly, which is
why no heat flows because it simply doesn’t have enough time to flow. But
this means a cycle is completed relatively quickly, and so we are getting the
work of the cycle out in a short amount of time. Recalling that work per
time is power, we see that having a fast cycle can lead to more power output,
which is often desired.

10.6 Refrigerators

An interesting thing happens if we take a heat engine and run it backwards:
we make a refrigerator. By refrigerator, we mean a device which requires
work as input and is able to make heat flow from a colder object to a
hotter object. This includes, of course, the refrigerator that keeps your
milk from getting spoiled, but also includes air conditioners and even heat
pumps (which is basically an air conditioner hooked up backwards to cool
the outdoors and warm your house).

Making heat flow from cold to hot may sound like a violation of Clausius’s
statement of the second law, but it is not as long as something else is going
on in the process. Heat will not spontaneously flow from cold to hot; rather,
we must cleverly engineer the refrigerator to make it happen and, most
importantly, we must plug it in, to give the necessary work as input.

Let’s start with an engine diagram in reverse, as shown in Fig. 10.7, and
focus on the first and second laws. Energy conservation now requires

Qc| + W] =1Qu| (first law) (10.44)

which is exactly the same equation as before, since we reversed all the
arrows. Now the signs of the entropy change in the reservoir are reversed,
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so the second law says

_10ul 0l _

Astotal - ASH + ASC TH TC

(second law) (10.45)

This now provides an upper bound on |Q¢|, namely

T,
|Qc| < ﬁl@gl. (10.46)

What does this mean? It means we can run a heat engine backwards
and satisfy the first and second laws and actually make some heat go from
cold to hot. But there is a limitation on how much heat we can pull out of
the cold reservoir, and this limitation depends on the reservoir temperatures
and on how much work we provide. If we eliminate |Qy| from the upper
bound, Eq. (10.46), we can show

To

L —
Qc| < T To

|W|, (10.47)
which you will derive in the homework. This expression says that we need
work to pull heat out of the cold reservoir, and also that the effectiveness of
pulling out heat will depend on the reservoir temperatures. We can quantify
this “effectiveness” with what is called the coefficient of performance, CP,
defined as the ratio of what want (|Q¢|) to what we must pay (|W]):

Qcl . Te
W| = Ty —1T¢

CP = (10.48)

As before, the maximum coefficient of performance is obtained from the
borderline case of the second law ASioia) = 0. Notice that reservoirs that
are close in temperature yield a larger C'P. This makes sense, since the
closer Ty and T are, the less “uphill” we are making the heat flow.

In the refrigerator diagram the working substance now goes through a
counterclockwise gas cycle. This allows for the heat to flow into the gas
while it is at a lower temperature (lower than T¢) and heat to flow out
of the gas while it is at a higher temperature (higher than Tp). But this
counterclockwise cycle also means compression happens at higher pressure
than the expansion. This will require some outside source of work to drive
the gas through this cycle, which is exactly what we found from general
first law and second law considerations: work input is necessary to make
the refrigerator function. In other words, your refrigerator won’t function
properly if you forget to plug it in.
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Problems

1. A 36 gice cube at 0° C is dropped into 90 g of water at 22° C. Heat flows
from the water to the ice, bringing both to equilibrium at 0° C.

(a) Determine the number of moles of ice melted in cooling the water
to 0° C.

(b) Calculate the entropy change of the melted ice.

(c) Calculate the entropy change of the 90 g of water in this process. Is
your answer consistent with the second law?

2. Consider a pair of 5.0 mol ideal solids. Solid A initially has a temperature
of 500K, while solid B has a temperature of 200 K. The solids are
brought into thermal contact, and heat flows until the system reaches
equilibrium. Determine the entropy change of each solid, and the total
entropy change.

3. By what factor is the multiplicity increased in melting 18 g of 0° C ice
into 0° C water?

4. A heat engine draws 600J of heat per cycle from a hot reservoir at
800 K, and dumps 300 J of heat per cycle into a cold reservoir at 200 K.
Determine the efficiency of this engine.

5. Consider a 10 mol brick of ideal solid initially at temperature 500 K. This
brick is used as the heat source for a heat engine, which is dumping heat
to a room-temperature reservoir at 295 K.

(a) Determine the entropy change of the brick as it cools to room tem-
perature.

(b) Determine the minimum amount of heat that must be dumped by
this heat engine.

(c) Calculate the efficiency of this best-case engine.

6. Consider the two-brick heat engine of Example 5. Calculate the maxi-
mum amount of work that could be obtained from this engine. For this
problem, assume that the bricks are each an ideal solid with 2.0 mol.



PROBLEMS

225

7. Susquehanna Valley Limousine has modified their automobile engine to
provide heat for an oven to bake fresh chocolate chip cookies while you
cruise Lewisburg.® For each gallon of gas, 12 MJ of heat is dumped from
the engine into the oven at a temperature of 190° C, and the remainder
of the heat coming from the engine is dumped to the environment at
70° C, as described in Example 4. Calculate the maximum work possible
from a gallon of gas for this engine. As in Example 4, assume that the
hot reservoir has a temperature of 820° C and the heat coming from the

burning gas totals 120 MJ.

Ty =820°C

T

w

——

X

oven
Teq = 190°C

environment
Teo =70°C

Figure 10.8: Engine diagram for Problem 7

5Not really.
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8. In the cycle shown below, 1.0 mol of a monatomic ideal gas is initially
at a pressure of py = 100kPa and a temperature of T4 = 0°C. The
gas is heated at constant volume to Tp = 150° C and is then expanded
adiabatically until its pressure is back to pc = 100kPa. Finally, the gas
is compressed at constant pressure until it is back to its original state A.
Find

(a) the pressure, volume and temperature for each of the three labeled
points (A, B and C),
(b) the heat entering or leaving the system during each process, and

(c) the efficiency of this cycle.

p (kPa)
B
PB T
adiabatic
—
100 + -
A C
1 |
V4 Vo V (L)

Figure 10.9: Cycle for Problem 8

9. For the rectangular gas cycle in Fig. 10.5, assume that there is 0.50 mol
of diatomic gas.

(a) If this cycle is to operate between two reservoirs, calculate the min-
imum possible value for Ty and the maximum value for T¢.

(b) Compare the efficiency of this gas cycle to the maximum efficiency
possible for a cycle operating between these two reservoirs.

10. Explain why, for any gas cycle that is clockwise on a p-V diagram, the
area enclosed by the loop gives the net work by the gas in the cycle.
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P a
B
,a/diabatic
A
isothermal C
|
>

Figure 10.10: For problem 11.

11. The p-V diagram (Fig. 10.10) shows a complete cycle for an engine.
The table below shows the thermal energy change for the first process
(A — B) and the work done on the engine for the third process (C' — A).

(a) Fill in numerical values for the energies (with correct signs) for
every empty box in the table. Hint: fill in the easiest ones first,
and there is a particular law that you should be using liberally (it
rhymes with the Worst Claw of Schermodynamics).

(b) Determine the efficiency of this engine.

A Etherm @in Won
A—B +50J
B—C
C—A +30J
Cycle
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12. An Otto cycle for a fixed number of moles of a diatomic ideal gas is
shown in Fig. 10.11.

p(kPa) o
B
1000 |- - -
adiabats
700 + - _J‘L
| C
I
I I
. e
20 Q0 V(L)

Figure 10.11: Otto cycle for Problem 12.

(a) Calculate the pressure at points C' and D.

(b) Determine |Qc¢/|, |Qu|, and |W| for one cycle. Hint: save |W| for
last.

(c) Calculate efficiency of this cycle.

13. Derive Eq. (10.47), the upper bound for |Q¢| in a refrigerator, by starting
from the first and second laws.

14. Can you cool off your house by opening the door to the refrigerator?
Explain why or why not.
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15. A refrigerator is designed to keep its interior at a constant 5° C while
dumping heat into a room temperature environment at 22° C. The inte-
rior of the refrigerator may be regarded as a cold reservoir, while the air
around it is a hot reservoir. Now suppose a pitcher containing 1800 g of
room-temperature water is put into the refrigerator. We can break down
what happens next into two steps: (1) the water will cool down to the
temperature of the cold reservoir (fridge interior) as its heat flows into
cold reservoir, and (2) the refrigerator will turn on and do work (run a
compressor, circulate refrigerant, etc.) to extract this heat from the cold
interior and dump it to the air outside.

We'll calculate what happens in each of these steps.
Step #1:
(a) Calculate the change in entropy of the water as it cools from 22° C
to 5° C.

(b) Calculate the change in entropy of the cold reservoir (i.e. the inside
of the refrigerator) due to this same heat transfer.

(c) Is the second law of thermodynamics satisfied in this step? Explain
briefly why or why not, using your results above.

Step #2

(a) Now we must get rid of the extra heat in the cold reservoir by
transferring it to the hot reservoir. Calculate the change in the
entropy of the cold reservoir (refrigerator) as the excess heat from
step #1 is removed from the refrigerator’s interior.

(b) Determine the minimum amount of work required to remove this
excess heat from the cold reservoir.
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Chapter 11

Gravity and Geometry

11.1 Introduction

Newtonian gravity and Newton’s Second Law combined to give a wildly
successful description of planetary motion. This was a monumental break-
through, and the success of this theory — which showed that we can dare
to understand the workings of celestial objects like the planets — played a
large role in launching physics as a discipline.

Nevertheless, there were a few lingering shortcomings of the Newtonian
description of gravity. Here are three of them.

1. Newton himself was bothered by the idea that forces act across dis-
tances; that the Sun is doing something to the Earth even though it is
150 million kilometers away. This problem was later made worse with
the introduction of relativity which says that nothing, no influence of
any kind, can travel faster than the speed of light. Since it takes light
from the Sun about eight minutes to reach the Earth, how can the
Sun’s gravitational pull affect the Earth instantly?

2. Newton’s laws showed that mass has a curious double life. One role
of mass is to determine the strength of the gravitational force. A
separate role is to determine the acceleration of an object via d =
ﬁnet /m, regardless of what type of forces are involved. Our most
precise measurements indicate that gravitational mass (what appears
in the gravitational force) and inertial mass (what appears in the
second law) are exactly the same. But why should this one property
of an object play two separate roles? This coincidence requires some
explanation.

3. Precision measurements revealed that the orbit of Mercury, the planet
closest to the Sun, does some strange things that are inconsistent with
Newtonian gravity.

231
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Any new theory of gravity faces quite a challenge: it must resolve the
problems listed above while still reproducing all the successful results of
Newtonian gravity. And then ideally this new theory should predict some
new phenomena that could be tested to confirm the theory. Einstein rolled
up his sleeves and spent a decade working on this and achieved success,
emerging in 1915 with what is called general relativity.

A one sentence summary of general relativity is the following:

Mass tells spacetime how to curve; spacetime tells mass how to
move. I

Let’s process that. General relativity has at its core a very radical proposal.
Usually we think of space and time as a canvas on which things happen, and
we develop theories to describe how objects move through space and time.
But in general relativity, spacetime is what happens!! 1t is not something we
put into the theory, it is something we get out of it. In particular, the theory
predicts how spacetime is distorted by the presence of mass. Physicists call
this “curved” spacetime for reasons we will describe below. Objects then
move through curved spacetime and the resulting motion reproduces the
effect of a gravitational force.

With this peculiar theory Einstein was able to resolve the three issues
listed above and also predict some amazing new phenomena:

e that light can be bent by gravity,
e that the color (wavelength) of light can be affected by gravity,
e that very dense objects can trap light (what we now call black holes),

e that an accelerating mass emits gravitational waves.

These predictions have all been confirmed, most recently with the first direct
detection of gravitational waves in 2015, a century after they were predicted!

In this chapter we begin with a description of what distorted or “curved”
spacetime is, and describe the curved spacetime associated with a spherically
symmetric mass. Next we describe the principle of maximum proper time,
which provides the rule for how objects move through curved spacetime.
Then we finish with a qualitative discussion of how gravity bends light and
how gravitational waves are generated, and discuss the experimental verifi-
cation of Einstein’s theory.

11.2 Curved Space

Imagine performing the following geometry experiment. Take a circle of a
known circumference €'y and another larger circle with circumference Cs

!Quote from John A. Wheeler
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As
Cy

(a)

Figure 11.1: (a) Two concentric circles, with the distance between them labelled
as As. (b) The same two concentric circles on the surface of a sphere.

and arrange them concentrically, as in Fig. 11.1a. Now ask yourself what
is the shortest distance you could travel going from one circle to the other.
A reasonable answer would be to go along a radial line, and the distance
would be the difference in radii, Ar = ry —r; = Cy/(27) — C1/(27).

But now imagine that you measure this radial distance and you find it to
be some distance As that is not equal to Ar! What’s going on? One possible
explanation is that you might not be on a flat surface. For example, those
two concentric circles may be sitting on the curved surface of a sphere, as
depicted in Fig. 11.1b. And now it would make sense that As, the distance
you travel along the surface of the sphere to get from one circle to the other,
is not equal to Ar, the difference between the radii of the circles.

You might also notice with further experiments on this curved surface
that many rules of planar geometry are altered: the sum of the interior angles
of a triangle do not have to add up to 180°, parallel lines may eventually
meet, etc.

So what does this have to do with general relativity?

11.3 Curved Spacetime

Now we repeat our experiment with the two circles, but let’s go into space,
make the circles large, and center them around a spherical object of mass
M. This mass could be a planet or a star, or maybe a black hole. In this
case we are not on the curved surface of a sphere, rather we draw our circles
on a horizontal plane. But, surprise! We would again find that As, the
radial distance traveled, is not equal to Ar.

So now what’s going on? In general relativity, mass distorts space and
time, and what we are measuring is the distortion of space.? A curved

2And just like being on a curved surface, we would find that our distorted horizontal
plane breaks other rules of planar geometry, such as the angles of a triangle not adding
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surface is a helpful way to visualize distorted space, and for that reason,
physicists refer to the distorted spacetime predicted by general relativity as
curved spacetime. But it’s important to remember that the curved surface
is only a visualization tool.

So what does general relativity tell us about distorted space and dis-
torted time (which, from now on we will refer to as curved spacetime).
How is it that “mass tells spacetime how to curve”? Generally, the answer
requires one to solve a set of nasty coupled nonlinear differential equations
known as Einstein’s equations, which is well beyond the scope of this course.
Fortunately, for the case of the spacetime outside a spherical mass, there is
a relatively simple solution, which was found by Karl Schwarzschild.? We
now describe his solution.

11.3.1 Curved Space

Consider an equatorial plane, that is, a two-dimensional z-y plane of space
with spherical mass M centered at the origin. Define the coordinate r in
terms of the circumference C' of a circle centered about this mass; that is,
take a string of length C' and make it into a circle centered about the mass.
Then define r = C'/(2m).

Now, moving radially outward a small distance As will increase the
coordinate r by an amount Ar. If space were not distorted, we would expect
As = Ar. But since the mass M distorts space, As is not equal to Ar, but
rather they are related by

As=———2 A (11.1)

V11— Rg/r
Here Ry is the Schwarzschild radius, defined as

2GM
cz

Ry = (11.2)

where GG is Newton’s gravitational constant and c is the speed of light. Please
note: the Schwarzschild radius Rs is not the radius of the spherical mass
M. Tt is simply a length that appears in Eq. (11.1 to tell us how distorted
space is. This solution of Einstein’s equations applies for the region outside
of the mass M and for r > R;.

We can visualize this distorted space by introducing a fictional third
dimension and curving our z-y plane into it, as shown in Fig. 11.2. Like
our previous example with the surface of the sphere, this curved surface
illustrates why As > Ar and accurately captures the distortion of the z-y
plane. But don’t confuse this fictional third dimension with the physical z

to 180°.

3Schwarzschild found this solution to Einstein’s equations in 1915, the same year that
Einstein published his general relativity. Schwarzschild then died a year later in World
War L
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Figure 11.2: Curved space near a black hole. The distance As measured radially
along the surface between circles of radial coordinate ry and ro is
larger than their difference Ar.

direction. The curvature is only describing the distortion of the horizontal
z-y plane.

Example 11.1

How curved is space near the sun? That is, how different are As and
Ar?

Solution: First, find the Schwarzschild radius from Eq. (11.2) with
M = Mgy, = 1.99 x 1030 kg:

oGM 2% 6.67x 1071 NI 5 1.99 x 10% kg

B c2 (3.00 x 108 m/s)2

= 2950 m

(11.3)
Then use the general relativity relation between As and Ar, Eq. (11.1),
at the location 7 = Rgun = 6.96 x 10 m to get

2050m /2
As=(1-— =22 A
° ( 6.96><108m> "

= 1.0000021 Ar- (11.4)

That’s not looking very curved, but it turns out to be enough to direct
the motion of all the planets in their orbits about the sun!
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Figure 11.3: The clock closer to the mass M runs slower than the clock far away.
Low clocks are slow clocks!

11.3.2 Clock Rates

The spherical mass M distorts both space and time, so now let’s turn to
the time component. The Schwarzschild solution states that a clock located
at coordinate r runs slower than a clock located very far from the mass.
Consider a pair of events and let At, represent the time between these
events as measured by a stationary clock at coordinate r. Further, let At
be the time between the same pair of events as measured by a stationary
clock far away. These time increments are related by

Aty = J1— T Ar (11.5)
T

Note that At, < Aty for any finite . This means that clocks closer to the
mass M will run slower than clocks farther away, as illustrated in Fig. 11.3.
A nice mnemonic is “Low clocks are slow clocks”.

This is a completely separate effect from the proper time relation that
we studied in special relativity. There the clocks were moving relative to one
another, while here both clocks are stationary with respect to the mass M
and have no relative motion. Yet general relativity predicts that the clocks
still run at different rates.

Example 11.2 Clocks on the Earth’s Surface.

How much slower does a clock at sea level run than one far away from
Earth?

Solution:

First, find the Schwarzschild radius for the Earth, with M = 5.97 x
10%4 kg:

oGM 2% 6.67x 1071 NI x 597 x 102 kg

B c? (3.00 x 108 m/s)?

= 0.00885m
(11.6)
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That’s a lot smaller than the radius of the Earth! Next use Eq. (11.5)
with r = Rg = 6.37 x 10°m

0.00885 m
Atpy =4/1— ——— Atog & (1 —6.95 x 107 "9) At (11
tRy \/ 37 100 Atee & (1695 10710 Ate. (11.7)

A useful way to express this result is the rate at which a clock on
Earth falls behind:

Aty — Atg, = Atoo — (1 —6.95 x 10710 At
=6.95 x 107 10At,. (11.8)
The clock on Earth falls behind the far away clock an amount 6.95 x

107105 every second. Thus, for the clock on Earth to get behind the
remote clock by one second, it takes

1
605 % To-toseconds = 144 x 10%s ~ 46 yr. (11.9)

We don’t notice these time effects much near Earth, but these small differ-
ence are essential to be accounted for in the design and operations of GPS
devices. For a more dramatic example, see Problem 4.

11.4 Einstein’s Equivalence Principle

Now that we’ve discussed how mass curves spacetime, let us turn to the
second half of general relativity: how does spacetime tell mass how to move?
Einstein had a major insight early in his development of general relativity
called the equivalence principle. The equivalence principle states that there
should be no detectable difference between being in a gravitational field of
strength ¢g or being in a rocket in outer space that accelerates upward with
magnitude g. In either case, if you hold out a ball and let it go, it will
accelerate to the floor with acceleration g, as shown in Fig. 11.4.

This idea, which Einstein has referred to as his “happiest thought,”
stimulated his thinking in two ways.

1. He latched on to the idea that gravity might not be an actual force,
but rather, as in the case of the astronaut in the accelerating rocket,
it is an illusion of a force.*

2. He noted that the motion of an object in the presence of gravity would
be independent of its mass. If instead of dropping a ball, the astronaut

4Physicists call this an “effective” force.
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Orocket = g T

A

Earth /\
%

Figure 11.4: Dropping a ball on the surface of the Earth causes it to accelerate
downward with acceleration g. Dropping the ball in an accelerating
rocket appears to the astronaut as though a force is accelerating the
ball to the floor with effective acceleration g.

dropped her keys or dropped an elephant, the acceleration of the object
would be the same. This suggested that there is some natural motion®
in spacetime that is totally independent of which object is moving, and
this natural motion appears equivalent to a gravitational force acting.

Thus the equivalence principle provides an explanation for the equivalence
of gravitational mass and inertial mass.

11.5 Law of Motion for a Freely Falling Body

After a busy decade of work, Einstein finally sorted out how to turn the
equivalence principle into a definition of natural motion in curved spacetime.
Here’s the rule:

Of all the paths that an object could take from point A to point
B through curved spacetime, the physical path will be the one
that mazimizes proper time.

That reproduces the effect of gravity! Really? Let’s examine this.

11.5.1 Remaining Stationary in the Absence of Gravity

Imagine being in space far away from any masses, so there is no gravity
acting. And let’s consider a really boring trip: you start at the spacetime
point x = 0, t = 0s and end at the spacetime point z = 0, £ = 1s. Since

®Natural motion means the motion of an object in the absence of force.
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there are no forces acting on you, you must have simply remained stationary
at x = 0 the whole time, according to Newton’s First Law.

Now let’s see that we get the same result from the principle of maximum
proper time. We could imagine other ways to start and end at the correct
spacetime points. For example, as shown in Fig. 11.5, you could take off
at velocity v = 0.6¢ for half a second and travel 0.3 lt-s, and then suddenly
reverse direction and travel for another half second back to x = 0 at a
velocity of —0.6¢. This hyperactive approach gets you to your destination
with an elapsed time on your watch of

Atproper = At/T—v2/c2 = 1.0s x /1 —0.62 = 0.8s. (11.10)

That is, this trip would result is less proper time elapsed than the stationary
trip. Of all the ways of making the trip, the one taken at zero velocity will
give the longest proper time. This is because any non-zero velocity during
any part of the trip reduces the proper time required for the trip.

So indeed it works: the principle of maximum proper time says that the
natural motion from z = 0, ¢t = 0s to x = 0, ¢ = 1s in the absence of any
forces is simply to sit still.

t(s) t(s) 4

| 1
0.3 x(lt-s) 0.6 z(lt-s)

Figure 11.5: Two ways of tak- Figure 11.6: Two ways of taking a dif-
ing a spacetime ferent spacetime trip.
trip.

11.5.2 Moving at Constant Speed in the Absence of Gravity

Now suppose we want to go from the point x = 0, ¢ = 0s to the point
x = 0.61t-s, t = 1s. If our principle of maximum proper time is correct then
we should expect that the way to take the trip in the greatest proper time is
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Path 1 Path 2 Path 3

Figure 11.7: Trajectories

to go the ‘natural’ way, i.e., at a constant velocity v = 0.6¢, shown as route
(a) in Fig. 11.6. We already know that the proper time for this constant
velocity trip is 1sv/1 — 0.62 = 0.8s. Can we find a way that gives a longer
proper time?

Figure 11.6 shows an alternate route to get to x = 0.6lt-s, t = 1, labeled
as path (b). In homework problem 8, you will calculate the proper time for
this route. What you should find is that the total proper time is less for
the two-step trip, route (b), than the 0.8 second ‘natural’ trip at a single
velocity, route (a). In fact there is no other route that gives a longer proper
time than the natural route. Our principle shows an encouraging ability to
“explain” Newton’s first law, the law of inertia.

11.5.3 Moving in the Presence of Gravity

The principle of maximum proper time works in curved spacetime as well.
The path between two events actually taken by a freely falling body is that
path that MAXIMIZES the elapsed proper time. This rule answers the
question: How is it that “spacetime tells mass how to move”?

Here is a qualitative example. Throw a ball straight up and catch it one
second later at the same original height. What is the “naturally chosen”
path through spacetime that maximizes proper time? We have just seen
that, because of time dilation, paths that speed up, slow down, or reverse
direction tend to decrease proper time. On the other hand, we’ve learned
that clocks at higher altitudes measure more elapsed proper time than those
at lower altitudes. So now consider these three paths, shown in Fig. 11.7:

Path 1 The ball stays just above your hand the whole time. No speeding to
decrease proper time — BUT also not taking advantage of increasing
proper time by going high where clocks run faster. Not the best.
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Figure 11.8: Light being bent by curved space near spherical mass.

Path 2 Zoom high at almost light-speed, zoom back down. This gets the
ball high where clocks run fast, but time dilation at near light speed
means almost no elapsed proper time! No good.

Path 3 Spend most of the trip at a higher place where proper time elapses
rapidly. But don’t go very fast or change speed quickly, so the time
dilation is not too severe.

Result: Best path for maximizing proper time is parabolic motion —
fast up, slow and stop smoothly at the top, faster on the way down. This is
the motion we actually observe!

11.6 Gravitational Lenses

Now consider the motion of an object in the curved space of our spherical
mass M, as shown in Fig. 11.8). The maximum proper time path gets bent
as illustrated, regardless of the mass of the object. That makes sense: we
know this is reproducing gravity, and that with gravity the acceleration of,
say, the Earth due to the gravitational pull of the Sun is independent of the
mass of the Earth.

But this leads to an astounding prediction: even a beam of light, which
has no mass, will be bent by gravity! This phenomenon — called gravitational
lensing — has observational implications. Shortly after Einstein published
his theory of general relativity, astronomers used the idea of gravitational
lensing to predict an observational shift in the position of a distant star if
its light passes close to our Sun. The idea is shown in Fig. 11.9: if the
light from a distant star passes very close to the Sun on its way to your eye
on the Earth, it will be bent very slightly by the Sun’s gravitational field.
When you see that light, your eye doesn’t know that its path has been bent;
consequently, you perceive the light to be coming from a different location
in the sky. In other words, the star appears to be shifted slightly in the sky.

The problem with this prediction is that it is very difficult to see a star
if its light passes right by the Sun because, well, there is a really bright Sun
there blinding you if you want to look at the star. But during an eclipse in
1919, some scientists were able to measure this lensing effect on the apparent
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Apparent
location of
Distant star

You

Path of
light from
Distant star
Distant star

Earth Sun

Figure 11.9: Diagram (NOT drawn to scale) of the famous 1919 gravitational lens
test. Light from a distant star passing near the Sun is bent slightly.
An observer looking at this bent light from the star perceives the
star as being shifted slightly in the cosmos.

O galaxy 2 image

‘ ‘ galaxy 1 . galaxy 2
W

Barth

"‘O galaxy 2 image

Figure 11.10: Gravitational lenses can cause double images; i.e., the appearance
of what look like two identical galaxies in the night sky. The same
effect can produce rings and arcs as well.

location of the star Kappa Tauri (in the constellation Taurus). The shift in
the apparent location agreed precisely with the predictions made by Einstein.

The observation of gravitational lensing in 1919 was the first experi-
mental test of relativity, and its success made Einstein an international
celebrity. But this was certainly not the last test of gravitational lensing.
There are numerous examples of gravitational lensing when looking at dis-
tant galaxies. Not only can gravitational lensing shift the apparent location
of a distant celestial object, but it can cause double images (as sketched in
Fig. 11.10) or even apparent arcs or rings. See the hubblesite.org/news/18-
gravitational-lensing website for a gallery of images of gravitational lenses
of distant galaxies.

11.7 Black Holes

Let’s consider again a spherical object of mass M and radius R, and recall
our curved spacetime solution, given by Eqgs. (11.1) and (11.5). This solution
is valid only outside of the mass, in the region where r > R.

The radius R of the mass is not the same thing as the Schwarzschild
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radius Ry, given in Eq. (11.2). For stars and planets, the radius R is typically
much larger than R;. For example, from Example 11.1 the radius of the Sun
is R = 6.96 x 10® m, while the Schwarzschild radius is Ry = 2950 m.

Note that Rs depends only on the mass of the object and fundamental
constants. For an object to have R < R, it requires a very high density,
more dense than even an atomic nucleus. But if such dense objects were
to exist, they would have some extreme properties; in particular, light rays
that originate from inside the Schwarzschild radius, where r < R, are so
bent that they can never escape. So such an object would not emit any
light!

This is precisely what a black hole is: an object whose radius R is smaller
than its Schwarzschild radius Rs. They were predicted by general relativity
but remained largely the domain of science fiction for many years. After all,
it is hard to see something that doesn’t emit light!

But much evidence for black holes emerged. Most commonly, a black
hole can be found in a binary orbit with an ordinary star, and we can infer
the existence of the black hole from the wobbling orbit of the star. Now
there is general consensus that the centers of many galaxies, including our
own, contain a supermassive black hole that is many millions times the mass
of our Sun.

And then in 2015 we were able to see direct evidence of black holes when
we observed two black holes merging. The black holes didn’t send us light,
but they did send us gravitational waves!

11.8 Gravitational Waves

Since the late 1800’s it was known that an accelerating electric charge emits
electromagnetic waves. Einstein recognized that the same thing must hap-
pen for gravity: if any object with mass accelerates, the ripples made by that
object in spacetime will propagate outward, producing gravitational waves.

We won’t discuss this quantitatively, although Einstein did make quan-
titative predictions about the magnitude of these waves. The result: grav-
itational waves are predicted to be ridiculously weak unless the object
doing the acceleration is really, really, REALLY% massive. But believe it
or not, it has actually been possible to test this with significant astrophysical
processes.

The first test was performed by the duo Taylor and Hulse who made
meticulous measurements of the orbit of two neutron stars around each
other over the course of 30 years. As you know, objects moving in a circular
orbit are accelerating, so Taylor and Hulse calculated the gravitational waves
that should be emitted (based on Einstein’s theories), and then predicted the
decay of the orbits due to the loss of energy from the emanating gravitational

5Mind-bogglingly
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waves. The measurements of the decaying orbits that they made over many
years agreed perfectly with the predicted decay, providing the first evidence
— although indirect — for gravitational waves.

Direct measurements of gravitational waves is significantly more diffi-
cult. But this was also accomplished by the use to two giant interferometers
(one in Louisiana and one in Washington) called LIGO — the Laser Interfer-
ometer Gravitational-Wave Observatory. The details of these devices and
how they can measure ridiculously small gravitational fluctuations are re-
ally incredible, but we’ll save that for our weekly coffee talks. The result,
though, is that these devices obtained the first direct measurements of grav-
itational waves in the year 2015, emanating from the collision of two black
holes. Unsurprisingly, this discovery was awarded the Nobel Prize in 2017.
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Problems

1.

Use dimensional analysis on the definition of the Schwarzschild radius to
show that it has dimensions of length.

. Calculate the Schwarzschild radius for the following objects.

(a) A neutron star with mass 6.0 x 1030 kg.
(b) Jupiter.

. You find yourself near a black hole with the coordinate r equal to three

times the Schwarzschild radius.

(a) How much does the coordinate r increase if you move a distance
10m directly away from the black hole.

(b) How would you measure this increase in r?

. You still find yourself near a black hole with the coordinate r equal to

three times the Schwarzschild radius.

(a) A time of 10s elapses on your clock. In that time interval how many
seconds elapse on a clock very far away?

(b) You move to a new location where for every 10s that elapses on
your clock, 20s elapses on the remote clock. Determine your new
coordinate 7 in terms of the Schwarzschild radius.

. Special relativity review! The Millennium Tortoise and the Millennium

Hare are racing from Earth to Alpha Centauri, a distance of 41t-yr in
the Earth frame. The Tortoise travels at a constant speed of 0.5¢. The
Hare waits on Earth for 3 years after the Tortoise departs, and then
moves at the blazing speed of 0.8¢ to Alpha Centauri.

(a) Show that the Tortoise and the Hare arrive at Alpha Centauri at
the same time.

(b) Calculate how much time has elapsed for the Tortoise during this
trip.

(c) Calculate how much time has elapsed for the Hare during this trip.

. In the movie Interstellar the crew visits a planet that is orbiting a black

hole. The gravitational time dilation is so strong that one hour spent
on the planet corresponds to 7 years of time far away from the black
hole. Calculate the coordinate r of the planet’s location in terms of the
Schwarzschild radius. Express your answer as r = (1+small number) Ry,
that is, calculate the small number.



246 CHAPTER 11. GRAVITY AND GEOMETRY

7. A neutron star has mass of 6.0 x 10°0kg and a circumference of 27 x
15km. An object orbits this star in a circular orbit with circumference
2m x 15.01km. How far above the surface of the neutron star is the
object?

8. For path (b) in Fig. 11.6, assume you travel at velocity 0.8c¢ for the first
leg, and remain stationary, v = 0, for the rest of the trip.
(a) Calculate the t-coordinate at the junction point.

(b) Determine the proper time for each leg and add them to get the
total proper time.

(¢) Compare to the proper time of 0.8s for the direct route.

9. Explain why gravitational lensing could cause a distant point-source of
light, such as a distant galaxy, to look like a ring.

10. Consider a black hole with the mass of the Sun.

(a) Determine the largest radius that this black hole could have.

(b) Determine the minimum density that this black hole must have.



Answers to Selected
Problems

Additional Problems

A3 (a) Uterminal = g/b. A6 130m/s; 18 m/s?. AT (a) vayg = 0. A21 v =
VEkx3/m — 2gx0; h = kak/2mg. A22 (d) gR; (e) 2.5R; (f) 6mg. A23 (a) 6 km;
(b) 2kJ; c) drifts as far as ~7km. A28 (a) 2.7m/s; (b) 2.7m/s; c) 2.7m/s.
A38 m = 1718 MeV/c%; u = 0.4c. A39 550MeV/c?. A42 (a) 0.085J;

(b) more kinetic energy (0.141J); (c) 128 rev/min.

A55 (a) 82°C or 355K; (b) A — B: 1870J, B — C: 0J, C — A: —1700 J;

(c) 0.092; d) 0.355. A66 a = g(ma —my1)/(m1 +ma+m3/2), downward for
ma. A68 (a) 0.0027 N/kg; (b) 2.0 x 102°N; (c) 0.19N.

A69 (a) m = C(L3-L3)/2; (b) GCIn(Ly/Ly). AT2 T cos6. AT3 (a) +23.5J;
(b) 14.3m/s. AT5 Ly = —31.5kkgm?/s, Lp =0, Lc = +15.75 k kg- m?/s.
ABO (c) and (f) are possible; the others have incorrect dimensions. A82 (a)

197 cars; (b) $22.22. A84 7.4y. A85 7.15d. A91 (a) 7 = 2.4cmy,

7 =1.26 cm/hrz; (b) 7 = 3.8 cmi, ¥ = —23.9 cm/hrj. A92 259i+65.95 km/h.
A94 (a) z(t) = (12.5cm) cos[(42.0rad/s)t], (b) z(t) = (2.15cm) cos[(4.62 rad /s)t+
(% or 3.

Chapter 1
1.1 (a) (2) = 7.0m, v(2) = —2.9m/s; (b) z(2) = 6.56 m, v(2) = —2.80m/s.

Chapter 2

2.2 0.1331t-s/s. 2.3 1.8 x 107m/s. 2.5 0.995lt-s/s = 2.98 x 108m/s.
2.6 5.92 x 10°s. 2.7 (a) 62 yr; (b) 53 yr; () 3.21t-yr; (d) 3.21t-yr.

2.8 (a) 4.47yr; (b) 0.894c. 2.10 (a) 481t-yr; (b) 0.958¢. 2.12 (a) 20 ms;
(b) 9.61t-ms. 2.13 (a) 0.50s; (b) 0.50s (Duh!); (c) 15.8m; (d) 31.6m/s;
2.14 26.0m/s.

Chapter 3

3.1 Yes; 3.4 (a) A; (b) B; (c) D, (d) b,e,d; (e) a,e; (f) space-like: bc, bd,
cd, ae, be, ce; time-like: ab, ac, de. 3.6 (a) 12lt-ns, yes; (b) 9.61t-ns, no;
(c) discuss with prob session group and instructor; (d) A, C, B, D; it should
be consistent with (a); (e) A, B, C, D; it should be consistent with (b);

247
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(f) Discuss with problem session group and instructor. 3.7 (a) calendar
page; (b) B, then C, then A; (c) Atga garth = 18 min, Atac garth = 10 min,
AtgC Earth = 8min; (d) 30min; (e) BC light-like, CA time-like, AB time-
like. 3.8 (b) 61t-s; (c) 21t-s; (d) 101t-s; (e) 14s. 3.10 (a) 801t-s; (b) 801t-s,
0.81t-s/s = 0.8¢; (c¢) 0.81t-s/s = 0.8¢, 481t-s. 3.11 (b) 0.8¢; (¢) 4.5yr;
(d) 3.61t-yr; (f) D, B, C, A; (g) C, D, B, A; (h) 4.58 It-yr.

Chapter 4

4.2 0.308c. 4.3 (a) 0.946; (b) 0.385¢. 4.7 1.05MeV. 4.10 p = 6499 MeV /c,
u = 0.9897c. 4.14 E' = 15MeV, p’ = 12MeV/c. 4.16 (a) 899 GeV;
(b) 100 GeV; (c) u/c ~1—-8.98 x 1072 ~ 0.999999991. 4.17 p = 200 MeV /c;
K =100MeV. 4.18 p = 1.921 GeV/¢; u = 0.899c.

Chapter 5

5.1 (c) By = 10/v/5 ~ 4.47GeV, p3 = 10/y/5 ~ 4.47GeV/c. 5.2 u = 2¢/3,
same magnitude as Example 1. 5.5 (a) m = 5.06MeV/c?, u = 0.19c¢;
(b) 0.06 MeV. 5.7 (a) rest energy to kinetic energy; (b) 17.6 MeV.

Chapter 6

6.1 2nRT. 6.2 (a) m = 9.27x 10" kg, d = 2.28 x 107 0m, kg, = 48.0 N/m;
(b) 5180m/s. 6.3 9.30kJ. 6.4 (a) 628 J; (b) 11.2J; (c) 88.5J. 6.5 (a) 30° C;
(b) 499J. 6.7 0.229°C. 6.9 b, e. 6.15 303,000 J versus 157 J (the word
“wow!” would be appropriate here). 6.19 223 J.

Chapter 7

7.1 (a) 9.2x 1072 m; (b) 1810K. 7.2 (a) 479m/s; (b) 678 m/s; (c) 409 m/s.
7.3 (a) nice = 5.6mol, njjqy = 11.1mol; (b) 20.9kJ, (c) 3.5mol. 7.4 (Note:
assume m; = mo.) (a) v2; (b) 2, (¢) 2. 7.5 0.194mol. 7.13 244kPa.
7.15 (a) —4.76x10~23 kg-m/s; (b) 2,560 collisions/s; (c) —1.22x107* kg-m/s;
(d) 1.22 x 10719N; (e) 1.01 x 103 N; (f) 1.01 x 10° Pa.

Chapter 8

8.1 most: adiabatic, least” isobaric. 8.3 (a) fast compression (it’s also pos-
sible to have adiabatic expansion if encased in insulation, but that isn’t
what happens in a car engine); (b) from work done on the gas by the piston.
8.7 —46J. 8.8 0. 8.9 (a) 0.21 mol; (b) +877J; (c) —877J. 8.11 (a) AEiherm =
nRAT; (b) Egerm = SnRAT. 8.13 379kPa 8.15 A — B: Qi = 0,
Weon = 115.2J; B — C: AFEerm = 370.8J, Qin = 519.1J, W, = —148.3;
C — A: AFEiherm = —486.0J, Qi = —486.0J, Wy, = 0; Entire cycle:
AFBherm =0, Qin = 33.1J, Wy, = —33.1J.

Chapter 9

9.1 (a) 15. 9.2 1.5 x 10°. 9.3 (a) 1/216; (b) 1/216; (c) 10/216. 9.4 25/7 ~
3.6. 9.6 300K. 9.7 (a) 0.916kp; (b) 0.446kp. 9.8 B4 = 4Ep ;. 9.9 (a) From
A to B; (b) All energy will flow to system B. 9.16 (a) From A to B;
(b) AS4 = —0.6J/K, ASp = +1.20J/K, ASotal = +0.6 J/K;

(¢) Qatter/efore = 435107 9.18 From A to B.

e O
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Chapter 10

10.1 (a) 1.38 mol melted; (b) +30.3J/K; (c) —29.2J/K; yes (it had better
be consistent with the second law!) 10.3 this is e raised to the power
1.59 x 10%*. (Don’t bother trying to calculate that with your calculator.)
10.41/2. 10.5 (a) —131.5J/K; (b) 38.8kJ; (c) 0.241. 10.6 358 J (Note: this
assumes you keep enough digits in the final temperature. If you round the
final temperature to 346 K, you’ll get 399J). 10.8 (a) A: 100kPa, 22.7L,
273K; B: 155kPa, 22.7L, 423K; C: 100kPa, 29.5L, 355K; (b) A to B:
1870J; B to C: 0; C to A: —1700J; (c) 0.092. 10.9 (a) Ty = 4813K, T =
289K; (b) € = 0.18, as compared with maximum of 0.94. 10.11 (a) A—B:
Qin = 507, Wy = 0J; B=C: AEperm = —50J, Qin = 0, Wy, = —50J;
C—A: AFEtherm = 0, Qi = —30J, Wy, = 30J; cycle: AFherm = 0, Qin =
20J, Won = —20J; (b) 0.4.

Chapter 11

11.2 (a) 8890m, (b) 2.81m. 11.3 (a) 8.16m. 11.4 (a) 12.2s, (b) 3R..
11.5 (b) 6.93yr, (c) 6yr. 11.8 (a) 0.75s, (b) 0.7s. 11.10 (a) 2950 m,
(b) 1.85 x 109 kg/m?3.
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Tables of Thermodynamic Properties
Selected Properties of Solids
Material M (g/mol) (g/em?) Y (GN/m?) C (J/molK) wvs (m/s)
Aluminum 27.0 2.70 70 24.2 5000
Iron 55.8 7.87 211 25.1 5120
Copper 63.5 8.96 130 24.4 3810
Gold 197 19.3 78 25.4 2030
Lead 207 11.3 16 26.6 1190
ideal solid mN g m/d> ksp/d 3R=249  d\/ksp/m

Liquid Specific Heats

Liquid molecule C (J/mol-K)
water H-O 75.3
methanol CH3zOH 79.5
ethanol CoH5;0H 112.4
acetone (CH3)2CO 125.5
benzene CgHg 134.8
Gas Specific Heats
Gas Type C (J/mol-K)
neon (Ne) monatomic 12.5
argon (Ar) monatomic 12.5
hydrogen (Hz)  diatomic 20.5
oxygen (O2) diatomic 21.1
nitrogen (N2) diatomic 20.8

Latent Heats

Material T, (K) Ly (kJ/mol) T, (K) L, (kJ/mol)
Oxygen  54.4 0.444 90.2 6.82
Nitrogen 63.2 0.72 774 5.56
Ethanol 159 5.02 352 38.6
Water 273 6.01 373 40.6
Lead 600 4.77 2022 180
Copper 1358 13.3 2835 300
Iron 1811 13.8 3134 340




: Periodic Table of the Elements o
1.008 4.003
3 4 5 6 7 8 9 10
Li | Be B C N O F | Ne
6.941 | 9.012 10.81 | 1201 | 1401 | 16.00 | 19.00 | 20.18
11 | 12 13 | 14 | 15 | 16 | 17 | 18
Na | Mg Al | Si P S | Cl | Ar
2299 | 2431 2658 | 2809 | 3097 | 32.07 | 3545 | 39.95
19 | 20 | 21 23 | 24 26 | 27 | 28 30 | 31 | 32 | 33 | 34 | 35 | 36
K | Ca| Sc V [Cr|Mn|Fe |Co| Ni [Cu|Zn |Ga|Ge|As | Se | Br | Kr
30.10 | 40.08 | 44.96 | 47.87 | 50.94 | 52.00 | 5494 | 5585 | 58.93 | 58.69 | 63.55 | 65.39 | 69.72 | 7261 | 7492 | 78.96 | 79.90 | 83.80
37 | 38 | 39 42 | 42 44 | 45 | 46 48 | 49 | 50 | 51 | 52 | 53 | 54
Rb| Sr | Y Nb | Mo Ru|Rh |Pd|Ag|Cd| In [ Sn | Sb | Te I Xe
85.47 | 87.62 | 88.91 | 9122 | 92.91 | 95.94 1011 | 1029 | 1064 | 1079 | 1124 | 1148 | 1187 | 121.8 | 127.6 | 1269 | 1313
55 | s6 , 71 73 | 74 76 | 77 | 78 80 | 81 | 82 | 83 | 84 | 85 | 86
Cs | Ba Lu Ta | W | Re [ Os | Ir Pt | Au{Hg | Tl | Pb | Bi | Po | At | Rn
1329 | 137.3 1 1750 | 1785 | 181.0 | 1838 | 1862 | 190.2 | 1922 | 195.1 | 197.0 | 200.6 | 2044 | 207.2 | 209.0 | (209) | (210) | (222)
87 | 88 , 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 122 | 112 | 123 | 114 | 115 | 116 | 117 | 118
Fr | Ra ' Lr Db | Sg | Bh |Hs | Mt | Ds [Rg | Cn | Nh | FI | Mc | Lv | Ts | Og
(223) | (226) ' (266) | (267) | (268) | (269) | (270) | (270) | (278) | (281) | (282) | (285) | (286) | (289) | (290) | (293) | (294) | (294)
// T T T e
A e
57 | 58 | 59 61 | 62 65 | 66
La | Ce | Pr {Nd |Pm|Sm | Eu | Gd | Tb | Dy | Ho Tm | Yb
1389 | 140.1 | 140.9 | 1442 | (145) | 150.4 | 1520 | 157.3 | 158.9 | 1625 | 1649 | 167.3 | 168.9 | 173.1
89 | 90 | 91 93 | 94 97 | 98 100 | 101 | 102
Ac | Th | Pa Np | Pu |Am |[Cm | Bk | Cf Fm | Md | No
(227) | 2320 | 231.0 | 2380 | (237) | (244) | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (259)







