A hunt for magnetic signatures of hidden photon and axion dark matter in the wilderness

Ibrahim A. Sulai

June 9, 2023

Bucknell University

The SNIPE Hunt Collaboration

The Dark Matter Landscape

Samuel Velasco/Quanta Magazine

On Axion and Dark Photon Dark Matter

- bosonic S=0 for axion, S=1 for DP
- Have high mode occupation

- Classical wave with frequency $\omega_c = mc^2/\hbar$.
- The standard halo model suggests that $T_{coh} = 1/\Delta\omega \sim 10^6/\omega$

The SM is extended by a new (kinetically mixed) gauge field.

In the Interaction basis:

$$L \subset -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} + \left(\varepsilon m_{A'}^2 A'^{\mu} - J^{\mu}_{EM} \right) A_{\mu}$$

The SM is extended by a new (kinetically mixed) gauge field.

In the Interaction basis:

$$L \subset -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} + \left(\varepsilon m_{A'}^2 A'^{\mu} - J^{\mu}_{EM} \right) A_{\mu}$$

- We have an interacting mode A_{μ} and a sterile mode A'_{μ}
- Only the interacting mode A_µ couples with matter
- We can define an effective current $m{J}^{\mu}_{eff}(m{x},t)=-arepsilon m_{A'}^2m{A}'^{\mu}(m{x},t)$

Signal on Earth

Knowing the boundary conditions and the source term, we can solve the modified Maxwell equations to determine the magnetic field pattern over the surface of the Earth!

"Earth as a transducer for dark photon dark matter" Fedderke et al. Phys. Rev. D 104, 075023 (2021) Fedderke et al. Phys. Rev. D 104 095032 (2021)

Signal Pattern over Earth

Assume J_{eff} is along the rotation axis of Earth.

Application of Ampere's Law yields

$$BR \sim \oint \mathbf{B} \cdot dl \approx \iint J_{eff} \cdot dA \sim \varepsilon m_{A'}^2 R^2 A'$$
$$B \sim \varepsilon m_{A'}^2 R \sqrt{\rho_{DM}}$$

The Magnitude of the measurable signal goes as R!

Signal Pattern over Earth

would be in $\Phi_{1,m}$ modes

Distribution of magnetometer stations in SuperMag dataset

measured signals are projected onto expected modes

$$\mathbf{B}(\Omega_i, t_j) \cdot \mathbf{B}_i(t_j) \propto Re\left[\sum_m A'_m(t_j) \Phi_{1m}(\Omega_i) \cdot \mathbf{B}_i(t_j)\right]$$

Phys. Rev. D 104, 075023

On Axions and their detection

$$\frac{1}{4}g_{a\gamma}aF_{\mu\nu}\tilde{F}^{\mu\nu}=-g_{a\gamma}a\mathbf{E}\cdot\mathbf{B}$$

$$abla imes {f B} - \partial_t {f E} = {f J} - g_{a\gamma}(\partial_t a) {f B}$$

$$J_a = ig_{a\gamma}a_0m_aB_0e^{-im_at}$$

On Axions and their detection

$$J_a = ig_{a\gamma}a_0m_aB_0e^{-im_at},$$

Earth's field can be modeled and spatial distribution of axion induced mag field on Earth determined.

"Earth as a transducer for axion dark-matter detection" Arza et al. Phys. Rev. D 105, 095007 (2022) The SNIPE - Hunt aims to search for DPDM using earth as a transducer over the 1 - 1000 Hz band.

- A purpose built array for DPDM search
- Aims to search over higher frequency band than supermag
- Plans to use more sensitive magnetometers
- Currently 3 stations (Cal-State University East-Bay, Oberlin College, and Bucknell University)
- Proof of principle measurement made last July

Magnetometers are located away from man-made magnetic noise sources.

Station Activity

- Measurement campaign over 3 days in July
- Stations located in isolated locations far from man-made noise
- Commercial GMR sensors used (Twinleaf VMR)

scan-1, scan-2 analyzed independently as a cross-check.

Power Spectra

- Sensitivity at the $300pT/\sqrt{Hz}$ level.
- There is plenty of room to improve

Time [hours] from 2022-07-22 00:00:00 UTC (1342483218.0)

Thunderstorms and geomagnetic storms are clearly evident

Limits on ε

DPDM analysis

Candidate Events

Some frequencies appear significant.

Candidate Events

Some frequencies appear significant.

But are artefacts of a single station

Limits

Axion Limits

Axion Limits

- Gen II experiment will use sensors with fT/\sqrt{Hz} sensitivity
 - ► Atomic Mags capable but technically challenging
 - $\blacktriangleright \sim$ meter long 50K turn Induction Coil magnetometers look promising
- Measure $\nabla \times B$ directly to minimize impact of boundary.
- Prelim Measurements planned for Summer 2023

The SNIPE Hunt Team

Theory

Saarik Kalia, Peter Graham, Michael Fedderke, Ariel Arza, Itay Bloch

Oberlin College

Jason Stalnaker, Eduardo Castro Muñoz, Ehsanullah Nikfar

Cal State East-Bay

Derek F. Jackson Kimball,Erik Helgren,Katie Hermanson,Madison Forseth,Andres Interiano-Alvarado,Brittany Karki,Andre Li

Messiah University

Abaz Kryemadhi, Will Griffith

Bucknell University

Ibrahim Sulai, Brian Garthwaite, Christopher Fabian, Yicheng Wang